Designing Policy Incentives for Cleaner Technologies: Lessons from California’s Plug-in Electric Vehicle Rebate Program

Tamara L. Sheldon, J.R. DeShazo, and Richard T. Carson

June 28, 2016

Abstract

Weassess the performance of alternative rebate designs for plug-in electric vehicles. Based on an innovative vehicle choice model, we simulate the performance of rebate designs that vary in terms of vehicle technologies, consumer income eligibility, and caps on the price of vehicles eligible for subsidies. We compare these alternatives in terms of 1) the number of additional plug-in electricvehicles purchased, 2) cost-effectiveness per additional vehicle purchase induced, 3) total program cost, and 4) the distribution of rebate funding across consumer income classes. Using the status quo rebate policy in California as a reference case, weidentify two alternativetypes of designsthat aresuperioralongall four performance criteria.

[^0]
1 Introduction

Policymakersdesignpublicincentiveswith theaim of inducingconsumersto adoptinnovative technologies that reduce environmental damages. Such incentives may include price subsidies, rebates, tax credits, sales tax exemptions, and subsidized financing. These policy incentives are currently deployed to induce consumers to adopt technologies such as alternativefuels and vehicles, energy and water efficient technologies, and renewableenergy technologies, among others. While the critique of these incentives as "second best" from a social efficiency perspective is well known, researchershave paid muchless attention to how to cost-effectively and equitably design these commonly encountered policy incentives.

We use California's plug-in electric vehicle(PEV) rebate program as a reference case in order to explore the opportunity for both more cost-effective and equitable policy deigns. In our policy setting, there are several possible sources of heterogeneity that the incentive policy's design might leverage. First, the policy may set different rebate levels for different products, in our case for Battery ElectricVehicles (BEVs) and Plug-in Hybrid ElectricVehicles (PHEVs). Second, a policy may employ price caps, which would make PEVs above the specified priceineligiblefor arebate. Third, a policy could baserebatelevels on heterogeneity. Recently California adopted legislation (SB 1271) requiring rebate levels to vary with consumers' incomelevelsand subsequentlyannounced it wouldlimitrebates to households with incomes under \$500,000 (orindividuals with incomes under \$250,000).

We motivate our empirical analysis with a theoretical model of a social planner who must determine therebatelevel to assign to consumers in order to maximizePEV purchases subjectto abudget constraint. Oursocial plannerfacesheterogeneousconsumersintheirex anteutilitiesforthenewproducts and theirmarginal utilities ofincome. Ourmodel predicts that the social planner's optimal rebate to assign decreases as a consumer's ex ante value of the product increases. Consumer segments with high ex ante values for the product are more likely to purchase the product under any policy, thus qualifying in greater numbers for the rebate than are consumer segments with lower ex ante product values. As a result, targeting consumers with lower ex ante values is more cost-effective, requiring less public rebaterevenueforthesamechangein consumer probabilities of productswitching. Second, ourmodel predictsthat the social planner'soptimal rebateincreases as the consumer's own marginal utility of income increases. Any given rebatelevel is more effective in maximizing the sum of probabilities of purchasing the product for the segment of consumers who are relatively more price responsive.

Our fundamental contribution is an approach to simulating the cost-effectiveness of alternative policy designs. The relevant policy setting is one in which policymakers must
set incentives levels across more than one product and for which consumers have productdifferentiated demands. The basic elements of the analysis require that the researcher has estimates of 1) the price elasticities of demand for the relevant dimension of consumer heterogeneity (i.e., income classes in our case), 2) the distributions of consumers' willingness to pay for each product, and 3) prices for the products. The researcher can then explore through demand simulations how the assignments of financial incentives across products and consumer segments will affect the number of total additional products purchased, the total cost of policy (e.g., required publicrevenues), and thecost effectiveness per additional product purchased. Wealso illustrate the use of a simple metric for comparing allocative equity across policy designs.

In order to evaluatetheeffectsofavariety of rebatedesigns, wefirst developand estimate an innovativeempirical model of consumer vehiclechoice. The centerpiece of our empirical analysis is a consumer vehicle choice model that enables us to model the consumer choices across all makes and models currently in the California market. A statewide representative survey of 1,261 prospective new car buyers in California enables us to identify individual preferences for conventional and alternativevehicletechnology attributes, allowingustoestimatepriceelasticities of demand and willingness topay for differentvehicles. Weintegrate this data on vehicle sales and market structure to predict the effect of alternative rebate policy designs on our policy performance metrics.

Wethen use this model to simulatethe performance of rebate designs. Wefind that the status quo policy is effective, increasing the market share of PEVs by at least 7\%. The status quo policy offers $\$ 1,500$ and $\$ 2,500$ rebatefor PHEVs and BEVs, respectively. Wefind that theincidence of free ridingbyconsumers who would have purchased PEVsin the absence of a rebate means that policy cost per induced PEV purchase is around \$30,000 for the status quo policy.

Ourinitial simulation of alternative policy designs explorestheeffects of changingrebate levels across the two vehicle technologies (BEVs and PHEVs). These simulations reveal the impacts of consumers' differing ex antevalues (i.e., willingness to pay) for BEVsand PHEVs on the performance of rebate policies. For example, allocating higher rebates to BEVs, for which consumers have a relatively lower value, reduces the number of total additional PEVs sold but also improves policy cost-effectiveness and lowers total policy costs. While some policymakers give BEVs relatively higher rebates because they believe BEVs produce relatively higher social benefits, our recommendation that BEVs receive relatively higher rebates compared toPHEVsis based solely upon a cost-effectiveness criteria.

Our second set of analyses explores the effects of vehicle price caps. A vehicle price cap policy excludes PEV adopters from a rebate who have relatively higher values for PEVs as
expressed by their willingness to pay more for the PEV. Because relatively higher-income consumers tend to haverelatively higher willingness to pay forPEVs, a vehicle pricecap may rendermanyhigher-incomePEVadoptersineligiblefortherebate. Evaluatingavehicleprice cap of $\$ 60,000$, wefind that 10% fewer additional vehicles are sold, while cost-effectiveness improvesand total program costsfall by 34%. However, wefind that vehiclepricecapsdonot appear to signifi tly improve the allocative equity as some policymakers have suggested they would. For the California market context, this appears to be true for two reasons. First, many higher-income consumers also purchase lower-priced PEVs. Second, a vehicle pricecap does notinfl howrebates to vehicles below the price cap areallocated across consumers of different incomes.

Our third set of analyses evaluates redesigning the existing rebate program to give consumers in lower-income classes relatively higher rebates. Rebate policy designs that are progressivewithrespect toincomereducethenumber of consumerswhoreceiverebates, but who would have purchased the PEVs anyway. These policies also target lower-income consumers who have a higher marginal value for the rebate and who are less likely to purchase a PEV except in the presence of higher rebate levels. We find that these policies increase the number of additional PEVssold per rebatedollar spent(i.e., the cost-effectiveness of the policy) relative to the status quo policy.

Overall, we find two types of policy designs are superior to California's status quo policy along performance dimensions. The first type of policy offers very progressive rebate levels based on consumer income levels. An example of this policy would offer consumers purchasingBEVswhomakeincomesof 1)lessthan \$25,000, arebateof\$7,500,2) \$25,000$\$ 50,000$, a rebate of $\$ 5,000,3$) $\$ 50,000-\$ 75,000$, a rebate of $\$ 2,000$, and 4) over $\$ 75,000$, no rebate. Consumers purchasing a PHEV in these same income categories would receive $\$ 4,500, \$ 3,000$, and $\$ 1,000$, respectively. The second type of policy combines a less progressive rebate schedule with a vehicle price cap. An example of this policy would implement a $\$ 60,000$ vehicle price cap above which no rebate is offered while offering consumers making lessthan \$100,000 arebateof $\$ 5,000$ forBEVsand $\$ 3,000$ forPHEVs. These policies sell at least as many PEVs over the next three years as the status quo policy, are more cost effective (e.g., PEV sold per dollar spent), have lower total policy costs, and result in a significantly greater allocative equity.

2 Literature on Design of Technology Adoption Policies

Our central thesis is that afiscal policy could beimproved by recognizing and leveraging heterogeneity among consumers. This idea first emerged in the modern economics literature
with the discussion of design of tax policies (Diamond, 1970). However, this insight has not been widely developed and applied to the emerging literature on the design of incentives for innovative technology adoption policies. Instead, researchers concerned with technology adoption policies have to sought understand the types of externalities that may arise and howto best internalize these through our choice of policy instrument.

Researchers have evaluated whether PEV adoption will lead to emissions decreases or increases (Babaee, Nagpure, and DeCarolis, 2014). More sophisticated analyses havelinked increasedelectricitydemandbyPEVswith spatiallyexplicitchangesin emissionsandairpollutionexposures(GraffZivin, Kotchen, andMansur, 2014; Hollandetal., 2015). Researchers have also evaluated the effectiveness, measured in terms of health outcomes, of alternative transportation policies and technologies associated with hybrids and PEVs (Michalek et al., 2011; CBO, 2012; Tessum, Hill, and Marshall, 2014). Researchers have argued that there may exist a distinct set of externalities around innovation, adoption, and diff of new technologies that goes beyond the standard health, safety, and environmental externalities that havemotivated publicregulations traditionally. Themajority of these externalitiestake the form of sub-optimal knowledge spillovers among either consumers (i.e., learning by using) or producers (i.e., learning by doing) (e.g., J aff Newell, and Stavins, 2002, 2005; Fischer and Newell, 2008; Bollinger and Gillingham, 2012). In the context of emerging innovative productmarkets, earlyadoptersmayfacelargeprivate(learning) costswhileproducinglarge social (learning) benefits for later adopters leading to knowledge spillovers and adoption rates that are socially sub-optimal. Policies for innovative technologies with these externalities, these authors would argue, ought be designed to achieve the socially optimal schedule of knowledge spillovers in addition to internalizing environmental or health externalities (J affe, Newell, and Stavins, 2005).

A large literature exists that evaluates optimal choice of policy instruments for these externalities (Gillingham, Newell, and Palmer, 2006). Tax and cap and tradepolicies establish both positive incentives for the adoption and use of relatively cleaner technologies as well as negative incentives for the adoption and use of relatively more pollutingtechnologies. In contrast, policies such as rebates, tax credits, sales tax exemptions, and similar subsidies only establish positive incentives for the adoption and use of relatively cleaner technologies and thus are called "second best" policies. In the context of transportation policies, feebate policies have sought to replicate the effects of atax policy byincreasingthe price of relatively morepollutingvehicles whilereducing the priceofless pollutingvehicles. Policy analyses of feebate policies often share our analytical approach of using estimates of consumers' price elasticity of demand to evaluate changes in market share of the targeted vehicles.

Advocates of incentive policies often point to studies of demand for cleaner alternative
vehicles which show that consumers have lower demand for, and less knowledge of, these vehicles than other internal combustion engine vehicles (Bunch et al., 1993; Brownstone, Bunch, and Train, 2000; Axsen and Kurani, 2009; Hidrue et al., 2011). Historically, three types of vehicle incentive policies have been evaluated by researchers: the aforementioned feebate policies, as well as hybrid-electric vehicle (e.g., Diamond, 2009; Chandra, Gulati, and Kandlikar, 2010; Beresteanu and Li, 2011; J enn etal., 2013; Sierzchula etal., 2014), and "cash-for-clunkers" policies (e.g., Huang, 2010; Gayer and Parker, 2013; Li, Linn, and Spiller, 2013; Mian and Sufi, forthcoming). We compare our estimated effects of the California VehicleRebateProgram on changes in marketshare with these studies in Section 4.

An issue related to policy instrument choice that has recently received attention is that consumers appear to respond differently to financial incentives of different types, but which convey the same net value to consumers (Chetty, Looney, and Kroft, 2009). Researchers have shown that consumers respond more to rebates and sales tax exemptions that occur nearer to the point of sale than to income tax incentives, which must be applied for and received at some later point in time. Gallagher, Sims, and Muehlegger (2011) provide an exampleforcleanervehicletechnologieswhen theyreport thatHybridElectricVehiclesales increasemorein response to saletax exemptions that toincometax credits/ exceptions.

How much of a vehicle incentive is actually transferred to consumers depends upon its economicincidence. Incidence analysis anticipates that manufacturers or dealers will have an incentive to strategically adjust a vehicle's price in response to the presence of vehicle incentives. Whether market conditions permit this type of value appropriation will depend upon the relative elasticities of supply and demand curves for the vehicles. ${ }^{1}$ The available empirical evidence on the incidence for advanced clean vehicles comes from analyses of hybrid vehicle tax incentives. Examining the Toyota Prius, Sallee (2011) finds that drivers capture nearly all of the availabletaxincentives. Busse, Silva-Risso, andZettelmeyer(2006), who examine the incidence of dealer versus manufacturer controlled incentives, find a range between .31 and .81 cents on each dollar goes to the buyer depending upon the type of incentive. In the context of our analyses, as long as the rebate incidence is equal across all vehicles, our findings remain valid although the overall effectiveness of the rebate (on consumer purchases) would go down if dealerships capture some of rebates' value.

[^1]
3 Theoretical Model

Suppose there is one PEV available on the new car market and J non-PEVs available for consumers to choosefrom. Toincentivize PEV adoption, a social planner offers rebates to I consumers who purchase PEVs. A utility-maximizingindividual will purchase avehicle whenherutilityfromdoingsoexceedsherutilityfrompurchasinganyotheravailablevehicle as well as the her utility from the outside option not to purchase a vehicle. Wefocus on the decision to purchase a newPEV, contingent upon having chosen to purchase anewvehicle.

Contingent upon having decided to purchase a new vehicle, an individual purchases a PEV when her total utility from the decision, $u_{i, \text { PEV }}$, is greater than her utility for purchasing any other vehicle, $u_{i, j}{ }^{2}$ Let total utility for the PEV be her ex ante value for the PEV, v_{i}, minus the cost of the PEV, p, times her marginal utility of income, β_{i}.

The social planner reduces PEV price for consumers by assigning rebates, $r_{\text {; }}$, out of a policy budget, R, such that

$$
\begin{equation*}
u_{i, P E V}=v_{i}-\beta_{i}\left(p-r_{i}\right) . \tag{1}
\end{equation*}
$$

The policy maker's objective is to maximize the sum of individual new car buyer probabilities of purchasing PEVs, $\pi_{i}=\operatorname{prob}\left(u_{i, P E V}>u_{i, j}\right) \forall j /=P E V$, by allocating the rebatescosteffectively subject to thegovernment'sbudget constraint: ${ }^{3}$

$$
\begin{align*}
& \max _{\left\{r_{i}\right\}} \operatorname{prob}\left(u_{i, P E V}>u_{i, j}\right) \forall \boldsymbol{j} /=P E V \tag{2}\\
& \text { S.T. } E\left[\pi_{i} r_{i}\right] \leq \mathrm{R} . \tag{3}
\end{align*}
$$

Assuming utilities are linear and the sources of actionable difference between consumers are observable, wecan model probability as a conditional logit model:

The choice variable is the rebate level, r_{i}, which only affects utility of the PEV and not the utility of other vehicles. ${ }^{4}$ The social planner cannot affect the utility of the other vehicles

[^2]($u_{i, j}$ for $j /=P E V$). Therefore, in this framework, maximizing the sum of the probabilities of choosing the PEV is equivalent to maximizing the sum of the utilities for the PEV: ${ }^{5}$

Solvingtheconstrained maximization problem aboveresultsin thefollowingfirst order condition, where λ is the shadowvalue of the budget constraint:

$$
\begin{equation*}
\lambda=\frac{\beta_{i}}{\pi\left(r_{i}\right)+\beta_{i} \pi\left(r_{i}\right) r_{i}-\beta_{i} \pi\left(r_{i}\right)^{2} r_{i}} . \tag{6}
\end{equation*}
$$

If there are N new car buyers, then there are N first order conditions similar to Equation 6, one for each car buyer. We can solve these first order conditions for λ and set them equal to each other. The stylized case where $\mathrm{N}=2$ is instructive because it can help illustrate the infl of varying the characteristics of two different consumers. In this case, wefind the following:

$$
\begin{equation*}
\lambda=\frac{\beta_{1}}{\pi\left(r_{1}\right)+\beta_{1} \pi\left(r_{1}\right) r_{1}-\beta_{1} \pi\left(r_{1}\right)^{2} r_{1}}=\frac{\beta_{2}}{\pi\left(r_{2}\right)+\beta_{2} \pi\left(r_{2}\right) r_{2}-\beta_{2} \pi\left(r_{2}\right)^{2} r_{2}} . \tag{7}
\end{equation*}
$$

Asshownin theonlineappendix, under theassumption that $\pi_{i}<{ }^{1} \frac{1}{2}$ wefind thefollowing comparative statics: ${ }^{6}$

Optimal rebatedecreases as own ex antevalueincreases:

$$
\begin{equation*}
\frac{\partial r_{1}}{\partial v_{1}}<0 . \tag{8}
\end{equation*}
$$

Optimal rebate increases as other's ex ante value increases (via the interaction of the
manufactureranddealerpricingdecisions.
${ }^{5}$ Note that the denominator from Equation 4 does not fall out, but rather, since ${ }_{\boldsymbol{j}}^{\boldsymbol{j}} \boldsymbol{j}$, $\exp \left(\mathrm{u}_{i, j}\right)$ remains constant, maximizing Equation 4 is equivalent to maximizing the numerator of Equation 4 . In other words, maximizing x is equivalent to maximizing $\frac{x}{x+}$ where x is a choice variable and C is a positive constant.
${ }^{6}$ Given the market share of PEVs, the probability of the average consumer purchasing a PEV is likely to be considerably less than 50%, so the assumption that $n_{i}<\frac{1}{2}$ seems reasonable.The intuition of this condition is that once a consumer's probability of purchasing the PEV is high enough, her optimal rebate goes to zero and remains at zero if her ex ante value v_{i} or marginal utility of income β_{i} change marginally. This implies that if a consumer is going to purchase a PEV regardless, then it is a "waste" of public resources to give this person a rebate regardless if she is rich or poor.
shadowpricefor consumers 1 and 2 in Equation 7):

$$
\begin{equation*}
\frac{\partial r_{1}}{\partial v_{2}}>0 . \tag{9}
\end{equation*}
$$

Optimal rebate increases as own marginal utility of incomeincreases (i.e., moreprice sensitive):

$$
\begin{equation*}
\frac{\partial r_{1}}{\partial \beta_{1}}>0 . \tag{10}
\end{equation*}
$$

Optimal rebatedecreasesasother'smarginal utility of incomeincreases (viatheinteraction of the shadowprice for consumers 1 and 2 in Equation 7):

$$
\begin{equation*}
\frac{\partial r_{1}}{\partial \beta_{2}}<0 . \tag{11}
\end{equation*}
$$

Thesecomparativestaticsshowthathigherrebatesshouldbeassignedtoconsumerswith higher marginal utility of income and/ or lower ex ante value for PEVs. The intuition for this result is shown in Figure 1. Probability of purchasing the PEV is proportional to utility for the PEV. As shown in Figure 1a, we can plot utility of the PEV versus rebate level as a linear function where the y-intercept is utility without the rebate, $v_{i}-\beta_{i} p$, and the slope of the function is the marginal utility of income, $\beta_{\text {}}$. Although probability of purchasing the PEV increases with r_{i}, there is positive probability that the consumer will purchase the PEV in the absence of the rebate. If the consumer purchases the PEV in the absence of the rebate, the purchase is non-marginal in the sense that the purchase was not induced by the rebate policy. Area A is a proxy for the non-marginal purchase probability. Area B is a proxy for the marginal purchase probability; that is, by how much the rebate increases the probability of the consumer purchasing a PEV. The higher the consumer's ex ante value for the PEV, the higher her non-marginal purchase probability. The higher the consumer's marginal utility of income, the more responsive she will be to the rebate, and the higher her marginal purchase probability. The comparative statics show us that rebates are more cost effective when they target consumers with a higher ratio of marginal to non-marginal purchase probability, i.e., lower ex antevalues and highermarginal utilities of income.

Figure 1 lb shows that if two consumers have the same probability of purchasing the PEV in the absence of the rebate, the policy maker should target the rebate towards consumer 1, who has the higher marginal utility of income and thus has a higher ratio of marginal to non-marginal purchase probability. Figure 1c shows that if two consumers have the same marginal utility of income, the policy maker should target the rebate towards consumer 2, who has the lower ex ante value and thus has a higher ratio of marginal to non-marginal
purchase probability. In Figure 1d consumer 1 has a higher ex ante value for the PEV and a higher marginal utility of income, whereas consumer 2 has a lower ex ante value and a lower marginal utility of income. In this case the policy maker would want to assign rebates r_{1} and r_{2} such that the ratio of consumer 1's marginal purchase probability to non-marginal purchase probability equals that of consumer 2, as proscribed by Equation 7.

We can also think about Figure 1 as a demand curve, since PEV utility on the y-axis is proportional to quantitydemanded andrebateon thex-axisisameasureof price. Therefore, our theoretical results suggest that rebates should be targeted towards consumer segments with lower market share and steeper demand curves. Targeting consumer segments and/ or products with lower market share is cost effective because it results in fewer rebates being allocated to infra-marginal purchases. Targeting consumer segmentsand/ or products with steeper demand curves is more cost effective because the rebates stimulate more marginal purchases.

3.1 Cost-effectiveness analysis of rebate designs across two technologies

In our empirical analysis, welimit ourselvesto a cost-effectiveness analysis of alternative rebate designs rather than evaluating the socially optimal rebate design. We do not know themarginal social benefits (e.g., avoided externalities) associated with PEV purchases that would be needed to define a social optimum. However, the social planner's problem above makes several predictions (e.g., Equations8-11) about howtoimprovethecost-effectiveness of rebate policy designs with information readily available to the economists' standard demand analyses.

Weadaptand applythis model prediction to an empirical and simulation settingin order to increase the number of PEVs sold per public dollar spent (i.e., cost-effectiveness). We consider the policy problem of setting rebatelevels for two types of PEVs, BEVs and PHEVs, for which consumers havevery different ex ante values. Wefind that the consumers' ex ante values are lower for BEVs than PHEVs. From Equation 8, we predict that if rebate levels are relatively higher for BEVs as compared to PHEVs then the policy will be relatively more cost-effective. Wealsoconsiderthepolicyproblemofsettingrebatelevelswhenthemarginal utility of income varies across consumer (e.g., income) classes. Wefind that lower-income classeshaveahighermarginal utility ofincomethan do higher-incomeclasses. Equation 10 suggests that relatively higher rebatelevels for relatively lower income classes will produce more cost-effective policy outcomes.

3.2 Welfare Maximization

Assessing the design of a vehicle purchase rebate from the perspective of maximization welfare highlights several challenges that cost effectiveness analysis circumvent. First, vehicle purchaseincentives are "second best" instruments compared to "first best" cap and trade or taxinstruments. Thisisbecausealthoughtheseincentivesalterconsumers' vehiclepurchase decisions they cannot infl consumers' decisions about howmuch to drive a vehicle. As a result this incentive cannot precisely target externalities that arise in proportion to the vehiclemilestraveled suchaslocal air pollution and state-widegreenhousegas emissions. A second complication for vehicle incentives is that the social planner may be trying to target different externalities at once. In California these include suboptimal knowledge spillovers across both drivers and automakers, locally-varying air pollutant damages, and state-wide greenhouse gas damages. This multiplicity of externalities also makes setting the welfaremaximizinglevel of avehicleincentivevery challenging.

3.3 Model Extensions

One extension of this model would consider theinter-temporal dynamics of consumer-to-consumerinformation spillovers. In thecontext of emerginginnovativeproductmarkets, early adopters may face large private (learning) costs while producing large social (learning) benefits for later adopters, leading to knowledge spillovers and adoption rates that are socially sub-optimal (Stoneman and Diederen, 1994). ${ }^{7}$ Model extensionsthat target incentives to consumers in social networks with larger spillovers could further improve the cost effectiveness of rebate assignment.

Importantly, our theoretical recommendation to increase the relative rebate levels for relativelylower demand and lowermarket sharegoods assumes that productquality is comparable across the goods. We do not consider product quality differentiation within the model, which might be onecause for relatively lower demand and market share(Heutel and Muehlegger, 2015). In the dynamic setting described in the previous paragraph, product quality would be an important consideration, as subsidization of low quality products may lead to negativenetwork spillovers (e.g., bad reviews).

A second extension would recognize potential supply-side responses that rebate incentives might induce. Specifically, incentivelevels may change manufacturers' decisions regarding pricing, production volumes, manufacturer and dealer incentives, marketing campaigns and even new product offerings. While modeling the supply side is beyond the scope of this

[^3]paper, someofthesesupply-sideinfl encesdo dependupon amoreaccurateunderstanding ofrebate-inducedconsumerbehaviorwhichweaimtoprovidehere.

4 Empirical Model and Simulations

4.1 Empirical Model

The probability of a new car buyer selecting vehicle k (i.e., the market share of vehicle k) can be described as the new car buyer population-weighted average of the probabilities of new car buyers selecting vehiclek:

$$
\begin{equation*}
\operatorname{prob}\left(V_{k}\right)=\frac{f_{i=0}^{N}, w_{i} \operatorname{prob}_{i}\left(V_{k}\right)}{\substack{\mathcal{\}},{ }_{i=0}^{N} w_{i}}} \tag{12}
\end{equation*}
$$

where
$\operatorname{prob}\left(V_{k}\right)$: Average probability of purchasingvehiclek
$\operatorname{prob}_{i}\left(V_{k}\right)$: Probability of individual i purchasingvehicle k
w_{i} : Weight on individual i needed to make the sample representative of the new car buying population.

The probability of individual i selecting vehicle k is the product of the probability of individual i purchasing a vehicle, the probability of individual i selecting a new vehicle over a used vehicle contingent upon having chosen to purchase a vehicle, the probability of individual i selecting the make of vehicle k out of all available makes, the probability of individual i selecting the body type of vehicle k out of all available body types, and the probability of individual i choosing vehicle k over all other vehicles of the same make and bodytype:

$$
\begin{equation*}
\operatorname{prob}_{i}\left(V_{k}\right)=\operatorname{prob}_{i}(\text { Vehicle }) \operatorname{prob}_{i}(\text { NewVehicle } \mid \text { Vehicle }) \operatorname{prob}_{i}\left(M_{k}\right) \operatorname{prob}_{i}\left(B_{k}\right) \operatorname{prob}_{i}\left(V_{k} \mid M_{k}, B_{k}\right), \tag{13}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{k}: \text { Make of vehicle } k \\
& B_{k}: \text { Body type of vehicle } k .
\end{aligned}
$$

Our survey focuses on individuals who have already decided to purchase a new vehicle. We model the decision to purchase a PEV contingent upon having decided to purchase a new vehicle: ${ }^{8}$

$$
\begin{equation*}
\operatorname{prob}_{i}\left(V_{k} \mid \text { NewVehicle }\right)=\operatorname{prob}_{i}\left(M_{k}\right) \operatorname{prob}_{i}\left(B_{k}\right) \operatorname{prob}_{i}\left(V_{k} \mid M_{k}, B_{k}\right) \tag{14}
\end{equation*}
$$

Assuming linear utility with standard Type 1 extreme value errors, we can model each probability componentasaconditionallogit:

$$
\begin{align*}
\operatorname{prob}_{i}\left(B_{k}\right)= & \frac{\exp \left(v_{1 i}\left(B_{k}\right)\right)}{\}_{j=0}^{N}} \exp \left(v_{1 i}\left(B_{j}\right)\right) \tag{15}\\
\operatorname{prob}_{i}\left(M_{k}\right)= & \underset{\substack{N=0}}{\exp ^{N}\left(v_{2 i}\left(M_{k}\right)\right)} \exp \left(v_{2 i}\left(M_{j}\right)\right) \\
\operatorname{prob}_{i}\left(V_{k} \mid M_{k}, B_{k}\right)= & {\exp \left(V_{3 i}\left(V_{k} \mid M_{k} \underline{B_{k}} \underline{)}\right)\right.}_{\}_{j=0}^{N}}^{\exp \left(v_{3 i}\left(V_{j} \mid M_{j}, B_{j}\right)\right)}, \tag{16}
\end{align*}
$$

where
$v_{1 i}, v_{2 i}$, and $v_{3 i}$: Linear utility functions of individual i.
In order to make it tractable, the empirical model is somewhat restrictive. Our main assumptions include 1) limited vehicle substitution patterns, ${ }^{9}$ 2) full capture of the rebate by consumers (Sallee, 2011), and 3) that the introduction of the rebates does not induce more new vehicle purchases but rather shifts some conventional new vehicle purchases to PEVpurchases.

[^4]${ }^{9}$ This assumption is discussed in Section 4.5.

4.2 Data

We administered an online survey to a representative sample of Californian new car buyers ${ }^{10}$ and obtained a sample of 1,261 completed surveys. Of the respondents who completed an initial screener, approximately 42% both qualified as potential newcarbuyers and completed the survey.

There are several advantages to using stated preference data in this study. PEV sales accountforaverysmall share of thenewvehiclemarket, anduntil recently, onlyafewmodels were widely available. Available revealed preference data, such as vehicle registrations, do not include consumer characteristics. With stated preference data we are able to relate consumer preferencestoobservableheterogeneity, whichisnecessarytotargetrebatestowarddifferent consumer segments.

Since we vary prices randomly according to an experimental design, we avoid common endogeneity problems associated with estimating demand as a function of prices. Using stated preferencedataalso allowsusto assumearicherset ofPEVsbyestimatingpreferences for PEVs that did not exist at the time the survey was administered but have become commercially available since then or are likely to in the near future.

The survey first gathered household, vehicle, and demographic data. Next, the survey elicited body and brand preferences. Respondents were asked to choose the top two vehicle body types (out of twelve options) they weremost likely to select for their next new vehicle purchase. ${ }^{11}$ Then respondents were asked to select the top three brands (out of the twenty most popular brands by sales volume in California in 2012) they were most likely to select for theirnext newvehiclepurchase.

Next, respondents wereshown four sets of fivevehicles, as shown in Figure2, and in each set wereaskedto choosewhich of thefivevehiclestheyweremostlikelyto select for theirnext new vehicle purchase. The total set of twenty vehicles respondents chose from included all conventional vehicles (including internal combustion engine vehicles, hybrid electric vehicles, and diesel-fueled vehicles) on the newvehicle market as of the fall of 2013 that are of both the top brand and top body selected by respondents. Theremainder of the twentyincluded

[^5]a random draw of vehicles that are of the top body choice and second or third brand choice, or of the second body choice and top brand choice. In cases where the set of vehicles that meetsthesecriteriaislessthantwenty, theremainderof thevehicleswerearandomselection of vehicles that are of either of the top body selections or of the top brand selections. Finally, respondents were asked to choose which one of the four vehicles chosen as top picks out of thetwentyvehiclesin thepreviousfourquestionstheywouldbemostlikelyto selectfortheir next new vehicle purchase, as shown in Figure 3. This 'top' vehicle and its characteristics arecarried through to subsequent questionsin thesurvey. ${ }^{12}$

Respondents were provided withinformation on BEV and PHEV technologies and introduced to PEV attributes, includingrefuel price, electricrange, and HOVlaneaccess. Finally, respondents were asked to choose between the conventional version, two BEV versions, and two PHEV versions of the vehicle they previously indicated as their top choice. ${ }^{13}$ In each choice set the first column displayed the conventional vehicle, and we randomized whether the two BEVs or PHEVs appeared in the subsequent columns. Attribute levels vary for each vehicle version as shown in Table 1, with price pivoting off the price of the existing conventional vehicle. An example choice set is shown in Figure 4. By choosing between five versions of the top vehicle, respondents are encouraged to assume that everything else (e.g., trim and performance) except the listed attributes are identical. This allows us to focus on how respondents make tradeoffs between vehicle technology, price, refuel cost, electric range, and HOVlaneaccess.

Tomakethechoiceexperimentmorerealisticfor respondents, weemploy a pivot design. Price levels are designed to be percentages of a reference value. The price of the top conventional vehiclechosenbyarespondentbecomesherreferenceprice, and thedifferent price levels she sees are the percentage levels as specified by the experimental design multiplied by the reference price. For example, a respondent who selects a conventional model that costs $\$ 30,000$ would seeBEV andPHEVversions of that model that cost $\$ 31,500, \$ 34,500$, $\$ 37,500$, or $\$ 45,000$. On the other hand, arespondent who is consideringtheluxury end of the market and selects a conventional model that costs $\$ 60,000$ would see BEV and PHEV

[^6]versions of thatmodel that cost $\$ 63,000, \$ 69,000, \$ 75,000$, or $\$ 90,000$.
The conventional vehicle prices are therefore taken as fixed and we vary the PEV prices around that. As a result, we do not observe how consumers respond if we increase or decrease all vehicle prices but rather identify PEV demand elasticities relative to the prices of base models. However, this anchoring on current prices makes for a more realistic choice experiment.

More details of the experimental design are given in Sheldon, DeShazo, and Carson (2015). Theexperimental design excludesdominated choices, such that avehiclewithbetter attribute levels (greater range, lower refueling cost, etc.) is more expensive. However, attributes are not perfectly correlated with price. For a given price point, the other attribute levelsvaryrandomlysubject to non-domination of thealternative.

4.3 Comparison of Data and Results to Revealed Preference

In order to validatethenewcarbuyersurveydata, wecross-check therespondent characteristicswith asample ofnewcarbuyersfromtheCaltrans 2010-2012 CaliforniaHousehold Travel Survey (Caltrans, 2013). These comparisons, shown in Table 2, reveal that for 12 diagnosticvariables our survey sampleisverysimilar to theactual newcar buying population. Income, education and age are included in Table 2, exhibiting modest differences for a few value categories. ${ }^{14}$

Also shown in Table 2 is a comparison of our estimated vehicle class share with the Caltrans 2010-2012 California Household Travel Survey (Caltrans, 2013). Our estimated vehicle class shares are similar to actual market shares. The main discrepancies are pickup trucks, minivans, SUVs, and convertibles. As our survey was administered up to threeyears after the Caltrans survey, the lower estimates of truck and minivan shares may represent theincreasingpopularity of SUVsforfamilies. Thehigher estimated convertiblesharelikely representsinitial desireovereventual practicality.

Wecompare our estimated vehicle brand shares with the actual market shares from the California NewCar Dealer Association'sCaliforniaAuto Outlookfrom thefourth quarter of 2013 (CNCDA, 2013) in Table3. Overall, our estimated brand shares are similar to actual

[^7]market shares. Wealso find that higher income households are more likely to select luxury brands.

Under the current rebate policy, our simulations estimate a PEV market share of 3.1\%. The actual California PEV market share in the fourth quarter of 2013 was 2.5\% (CNCDA, 2013). At the time of the survey, newPEV models were rapidly coming to market. Some of the models available in December of 2013 may not have been available earlier in the fourth quarter. Additionally, consumers may not have had full information about all of the newly available PEVs. This likely accounts for the difference between our estimated market share and the actual market share. Our estimated PEV market share is close to the actual market share, which supports the predictive validity of our model. ${ }^{15}$ In the simulations, if we use therevealed preference brand and body shares from the Caltrans survey and the California New Car Dealer Association, we estimate a PEV market share of 3.0%. If we aggregate body types to two categories, lightweight trucks and cars, we estimate a PEV market share of 3.3\%.

Lastly, we relate our estimated price and income parameters to those found in the literature. A critical finding of our simulations is that as consumers' incomes rise their price elasticities decline, causing them to be less responsive to a given rebate. Similar patterns have been documented using revealed preference data in both the general vehicle market (Bunch and Mahmassani, 2009) as well as the hybrid market (Beresteanu and Li, 2011).

Using estimated quantities demanded for each vehicle across each income class before and after the rebate, we estimate an average price elasticity demand for BEVs of - 1.8 and for PHEVs of -2.3. Excludingthe top incomeclass, which behaves somewhat differently, we estimate an average income elasticity of demand of 0.2 for BEVs and -0.1 for PHEVs, which reflectstherelativelyhigherrates ofBEV purchasersinthetopincomeclasses. ${ }^{16}$ Ourmodels yield price and income elasticities for only BEVs and PHEVs, while most estimates in the literature are for conventional newvehicles. Nonetheless, these estimated price elasticities are in linewith newvehicles price elasticity estimates of-1.63 from Hess (1977) and -1.7 to3.4 from Bordley (1993) butlarger than the-0.87estimated byMcCarthy (1996). Ourmodel yields an estimated income elasticity of 0.2 to -0.1 for BEVs and PHEVs, respectively. By comparison, Hess (1977) estimated 0.26 for newvehicles while McCarthy (1996) estimated 0.85.

[^8]
4.4 Simulations

We predict PEV sales as follows:

1. Estimateprob ${ }_{i}\left(M_{k}\right)$ for each income class using a rank-ordered logit. Predicted probabilities from this estimation are shown in Table3.
2. Estimate $\operatorname{prob}_{i}\left(B_{k}\right)$ using a conditional logit. Covariates include body-specific constants and interactions with number of children and number of cars in a household. The estimation results are shown in Table 4. Predicted probabilities of purchasing differentbodytypesaredifferentforindividualswith differentnumbersof children and householdvehicles. Table5showstheaverageprobabilities acrossthesample.
3. Estimateprob ${ }_{i}\left(V_{k} \mid M_{k}, B_{k}\right)$ usinga conditional logit. Covariatesinclude purchase price (MSRP), refueling cost, electric range, BEV and PHEV constants, and an indicator for single-occupant HOVlane access. Theestimation results areshown in Table6.
4. Using the representative sample of new car buyers from the survey and the characteristics of existing conventional and PEVs on the market, ${ }^{17}$ predict PEV purchase probabilities for each individual in the sample according to Equation $14 .{ }^{18}$ Integrate PEV purchase probabilities over the weighted sample of new car buyers.
5. Reduce PEV purchase prices by specified rebate amount and redo step 4 to predict probabilities of purchasing existingPEVs given the different levels of rebates.

4.5 Substitution Possibilities in the Model

Each individual has a probability of purchasing each vehicle. The probability of an individual purchasing a Volt is the probability of her choosing a Chevrolet times the probability of her choosing a compact sedan times the probability of her choosing the Volt over alternative Chevrolet compact sedans.

The probability of choosing each brand is estimated using a rank ordered logit and is only a function of household income since almost all of the brands offer a range of body types. The implicit substitution pattern across brands is proportionate according to the standard independence of irrelevant alternatives assumption. However, because all brands are assumed to be available, thereis effectively no induced substitution across brands.

[^9]The probability of choosing each body type is estimated using a conditional logit as a function ofrespondents' topbodypicksandhouseholddemographicsandusingthemodel to predict the probabilities for each individual. Individuals' probabilities can change, but only as afunction of household demographics(i.e., number of children and number of household vehicles). Therefore, in this model there is effectively no induced substitution across bodies as afunction of vehicle price.

However, even if an individual's most preferred body typeis a compact sedan, her probability of purchasing a RAV4 BEV (an SUV) will still change as the rebate for the RAV4 BEVincreases, sincetheindividual has afull set of probabilities and therebateincreases the individual's probability of purchasing a RAV4 BEV over other Toyota SUVs. Effectively, the model assumes that a rebate on a PEV in a given class impacts an individual's probability of purchasingthatPEVversus othervehicles in that class, but does notimpact theindividual's probability of purchasing a vehiclein the given class.

The implied substitution patterns of the model suggest that increasing PEV sales of a certain model cannibalizes sales of the auto maker's other models. For example, suppose that a respondent's top choice vehicle is a Toyota Camry and her second choice is a Honda Accord. A Toyota Camry PEV offering in our model would reduce probability of purchasing the conventional Camry and not affect the probability of purchasing the Honda Accord. To avoid this issue would require a dramatically longer survey to estimate probabilities of switchingfrom onemake-model toanothermake-model (e.g., fromtheCamrytotheAccord) when a PEV is only offered for one of the two make-models. If the empirical model allowed for such substitution patterns, thesimulations would predict higherPEV sales.

4.6 Other Sources of Demand Heterogeneity

In our simulations, wefind that the higher income groups purchase PEVs at higher rates (notethat the simulation results presented later in the paper showtotal PEV sales predicted by income group, but the income groups are of different sizes). Wealso find by interacting thePEVindicatorintheconditional logitmodel withvariousdemographicsthathouseholds with more than one vehicle and households that live closer to the coast are more likely to purchase a PEV, although these findings are not statistically significant. ${ }^{19}$ These findings are consistent with characteristics of PEV purchasers over the last fewyears.

We currently accommodate heterogeneity in demand for PEVs by vehicle technology

[^10](BEVs, PHEVs and ICEs), body size and types, as well as some household characteristics such as income, number of children, number of pre-existing vehicles in household fleet. In related work (Sheldon, DeShazo, and Carson, 2015), we explore a number of other sources of preference heterogeneity, and associated consumer segmentation that are not directly germane to questions of rebate policy design. The factors include vehicle range, cost per mile driven, gasoline costs, commuting patterns, access to High Occupancy Vehicle lanes, work place charging opportunities as well as household age, education, housing type, and political attitudes.

4.7 State Level Plug-In Electric Vehicle Policies

Currently, several states offerfinancial incentivesthatreducethepurchasepriceforPEVs through direct rebate, tax credit, and sales tax exemptions. Table 7 show the incentives offered by these states. The amount of incentive PEV buyers receive can be determined through afew different methods. California provides fixed rebates, and the amount is lower for PHEVs than BEVs. Someother states, such as Massachusetts and Pennsylvania, provide fixed amount of rebates for vehicles with battery capacity above a certain threshold. Colorado, Maryland, and South Carolinadeterminetheamount of incentivebybattery capacity, and while they set a maximum amount for rebate, they do not fix the amount for which each vehicle model is eligible. In states like Illinois, Georgia, Louisiana, and West Virginia, PEV buyers multiply the MSRP by a percentage to determine the incentive amount they are eligible for; if the amount is above the maximum set by the state, they receive the maximum incentive available. New J ersey and Washington State provide sales tax exemptions for BEVs, but not PHEVs.

The California Clean Vehicle Rebate Projects currently provide rebates of $\$ 2,500$ for BEVs and $\$ 1,500$ for PHEVs. As of August 2014 this program had offered morethan 50,000 rebates totaling over $\$ 100$ million since its inception in 2010. Plug-in electric vehicles are also eligible to use high occupancy vehiclelanes in California untilJ anuary 1, 2019.

5 Results and Discussion

We use these simulations to evaluate a variety of alternative rebate policy designs, the results of which are presented in Tables 8, 9 and 10. These results characterize the performance of alternative policy designs over approximately the next 3 years (i.e., 2014-2016) in California. They assume that consumers face the same choice set of PEVs and prices that are currently availablein the California market and that annual newvehicle sales will beflat
over the next three years.

5.1 Simulating the California Status Quo Rebate Policy

Wefirstsimulatethestatusquorebatepolicyin California, whichoffersall incomeclasses the samerebates of $\$ 2,500$ forthepurchaseofaBEV and $\$ 1,500$ for thepurchaseof aPHEV. Table 8 describes the baseline number of BEVs and PHEVs purchased by each income class (i.e., the number of BEVs and PHEVs that would have been purchased even if there was no rebate) as well as the additional vehicles induced by the policy design.

Micro-dynamics across income groups and vehicle technologies. Next we reflect on two observed patterns predicted earlier by our model that can be observed in the simulation results for the status quo rebate policy as shown in Table 8. First, these simulated estimates reflect the consumers' relative ex ante preferences for PHEVs over BEV sin nearly everyincomeclass, withconsumersin several incomeclassespurchasing2to3timesasmany PHEVs as BEVs. Second, in general, the lower income classes have lower ex ante values for both BEVs and PHEVs, purchasing fewer vehicles than do the middle and upper-middle income classes. ${ }^{20}$

Wefind that lower incomeclasses are typically more responsive to the rebate dollars due to their higher marginal utility of income. Interestingly, consumers in the highest income class (above $\$ 175,000$) appear to behave somewhat differently (see Table 8). Their ex ante value for PEVs is lower than that of the middle income classes, perhaps reflecting their preference for high performance luxury vehicles, which are less likely to be found among existing PEVs. In addition, unlike any other income class, they prefer BEVs $(4,060)$ to PHEVs $(3,371)$, revealing the importance of the Tesla Model S for this income class.

A cost-eff eness measure. For the status quo policy, the total of additional vehicles purchased acrossall incomeclasses is estimated to be9,699 overthenext threeyears. In Table9, wecalculatetherevenuecosts byincomegroup and byvehicletechnology. Summing the rebates over vehicle type and income class gives us the estimated total status quo program costs of $\$ 291$ million over the next 3 years. Dividingtheadditional vehicles purchased bythetotal cost givesusa policy cost-effectivenessmeasurewhich wecalculatetobe $\$ 30,017$ per additional vehicle as shown in Table 10. For the status quo policy, every additional PEV purchased (over the baseline of what would have been purchased in the absence of rebates) requires California to spend $\$ 30,017$ per vehicle. Our simulation suggests that 42% of the valueof the rebates allocated goes to consumers makingless than $\$ 75,000$ under the status quo policy.

[^11]The cost effectiveness of the simulated policies is driven by the ratio of marginal to inframarginal PEV purchases, as predicted in Section 3. Ultimately, the simulations suggest it is optimal to allocate higher rebates to products for which consumers have lower ex ante values (BEVs) and to consumers who have lower ex ante values (lower income consumers) becausethey havefewerinfra-marginal purchases. Thesimulationsalso suggestitisoptimal to allocate higher rebates to consumer sectors that are more responsive to the rebates (in this case, consumers with higher marginal utilities of income are more responsive) because they have more marginal purchases. In Table 11 we solve for the optimal rebate schedule that maximizes PEV sales, holding the budget equal to the status quo policy. This policy equalizes the ratio of marginal to non-marginal PEV purchases by allocatinghigher rebates to consumer-product segments with lower but steeper demand curves.

Comparisons with other rebate policies. Our model predicts that 148,636 PEVs would have been sold in the absence of the status quo policy. Note, though, that these consumers would still be eligible for the larger federal tax incentive (up to $\$ 7,500$) as well as local government rebates and reduced-cost parking and charging policies. Wefind that the current rebate, which has a weighted value across BEVs and PHEVs of about \$1,838, induces the purchase of 9,699 PEVs, a 7\%increase in PEV sales, or a 0.2\%increase in total market share. As a point of comparison, Sierzchula et al. (2014) use ordinary least squares regression analysis of financial incentives in 30 countries to suggest that an increase in rebate level of $\$ 1,000$ is correlated with an increasein the observed marketshare of.06\%forPEVs.

Weareabletocomparethisestimatetotwoothertypes of vehiclerebatestudies, thosefor hybrid electric vehicles (HEVs) and thosefor scrappage, or "Cash for Clunkers," programs. Analyzing the Energy Policy Act of 2005, J enn et al. (2013) find that for most vehicles, rebates levels in the \$1,000-\$3,000 range are correlated with a $7 \%-12 \%$ increase in sales. Gallagher, Sims, and Muehlegger (2011) find that a tax incentive of $\$ 1,000$ is associated with a 3\%-5\%increase in sales for HEVs, while a comparable sales tax waiver is associated with a 45\% increase in HEV sales. Analyzing the Canadian Hybrid Electric Vehicle rebate programs in different provinces, a Chandra, Gulati, and Kandlikar (2010) ordinary least square regression analysis finds that a rebate increase of $\$ 1,000$ is correlated with an increase in hybrid sales of 26%.

The federal and several state Cash for Clunkers rebate programs have been evaluated. Analyzing the Consumer Assistance to Recycle and Save Act (2009), Huang (2010) uses a regression discontinuityapproachtoinferthatan \$1,000 rebatecausesa7\%increaseinsales of more fuel efficient vehicles. Gayer and Parker (2013) find the same program causes a $6 \%-15 \%$ monthly increase in market share at various months during the program. Other evaluationsincludeLi, Linn, and Spiller (2013) and Mian and Sufi (forthcoming).

Wefind that our estimate falls within the range produced by existing studies but is on the lower end of the distribution. That a rebate of a similar magnitude would be slightly less effective for PEVsthan for HEVs or other fuel efficient vehicles should not be surprising for several reasons. First, PEVs require consumers behaviorally change their refueling practices, including purchasing an at-home charging station in most cases. Second, this study was conducted during a period of high unemployment and lower vehicle purchases than the timeframesutilizedbysomeoftheHEVstudies thatproducedhighermarketshareestimates (Gallagher, Sims, and Muehlegger, 2011).

5.2 Changing Rebate Levels Across Vehicle Technologies

Alternative rebate policies 1 and 2 explore the effects of equalizing the rebates and uniformly lowering the rebates across the vehicle technologies, respectively.

Equalizing rebates across vehicle technologies. Some observers have argued that PHEVs appear to generate similar magnitudes of electric miles traveled and should therefore be given rebate levels comparable to BEVs. Policy 1 illustrates what would happen in this market if policymakers reduce the BEV rebate by $\$ 500$ (from $\$ 2,500$) and increase the PHEV rebateby $\$ 500$ (from $\$ 1,500$), makingthe effectiverebateforboth vehicletechnologies $\$ 2,000$.

To examine the effects of Policy 1 , consider the response of consumers in the $\$ 25,000-$ $\$ 50,000$ income class in Table 8. Compared to thestatus quo policy, these consumers will purchase slightly fewer additional BEVs (614 versus 775, a decrease of 161 vehicles or 21\%) andmodestlymorePHEVs(1,716versus1,278, anincreaseof438 or34\%). Thelargeincrease in PHEV purchases reflectslarger consumer ex antevaluesfor thePHEVs. Therefore, more consumerswererelativelymorelikelyto buy PHEVsevenbefore theirrebatewas increased.

As a result of reducing the rebate on the BEVsby $\$ 500$, its cost-effective measure (BEV budget divided by additional BEVs sold) improves (falling from $\$ 32,691$ to $\$ 32,445$ per vehicle). However, the reverse is true for the $\$ 500$ increase in rebate levels for PHEVs, causing PHEV cost-effectiveness (PHEV budget divided by additional PHEVs sold) to fall (rising from $\$ 28,059$ to $\$ 28,981$ per vehicle) compared to the status quo policy. The net effect is to slightly worsen total cost effectiveness of the policy to $\$ 30,044$ per induced PEV purchase versus $\$ 30,017$ under the status quo policy. Thus, even if the magnitude of the positive externality associated with driving a PHEV were equal to that of driving a BEV, our analysis suggests that equalizing the rebate would not be a cost-effective use of public funds. Consideration needs to be given not just to the change in the total number of PHEV vehicles sold under Policy 1but also to the revenue opportunity costs.

This effect also is seen at the programmatic level. In comparing the status quo policy
with Policy 1 of equal rebate levels, many more additional vehicles are sold under Policy 1, increasing from 9,699 to 10,602, an increase of 9% in the number of additional PEVs purchased, which is driven by a 30% in the number of additional PHEVs purchased. The total cost of the program rises from $\$ 291$ million to nearly $\$ 319$ million. This is largely because Policy 1 increases the rebate by $\$ 500$ to the 99,148 consumers who would have purchased a PHEV in the absence of any rebate, and even though it induces an additional 7,349PHEVstobepurchased. Thisis offset slightly bya\$500 rebatereduction to the49,508 BEVs that would have been purchased without the policy and a reduction in the number of additional BEVs sold by only 848.

In summary, increasing relative rebates on vehicle technologies with relatively higher consumer ex antevalues increases the total additional number of vehicles purchased ceteris paribus. However, increasing relative rebates on vehicletechnologies with relatively higher consumer ex ante values worsens the cost-eff ctiveness of the overall program since it increases the magnitude of the rebate payouts to those who would have purchased the higher valuedvehicletechnologyanyway.

Uniformly reducing the rebate levels across technologies. Policymakersmight consider uniformly reducing rebate levels because budgetary pressure or a belief that government interventions are no longer justified. In Tables 8 and 9, Policy 2 reduces both the BEV and PHEV rebate levels by $\$ 500$, from $\$ 2,500$ and $\$ 1,500$, respectively. In comparison with the status quo policy, we observe consumers in all income classes purchasing fewer additional PHEV and BEV vehicles. The total reduction in additional vehicles can be observed by comparing the 6,999 additional vehicles purchased under Policy 2 with the 9,699 additional vehicles purchased under the status quo policy, a difference of roughly 2,700 additional vehicles or a 28% reduction. Total policy costs fall by over $\$ 80$ million since both theeligibleconsumersin thebaselineand additional consumers all receivelowerrebates by $\$ 500$. However, because of the commensurate fall in the number of additional vehicles under Policy 2, the cost-effectiveness performance of Policy 2, relative to the status quo, improves only a small amount, fallingfrom \$30,017to \$29,778. Whileuniformlyloweringtheeligible rebatesdoeslowertotal programcosts, itimprovescost-effectiveness onlyminimally.

Allocative equity with reduced rebates. Some policymakers have suggested reducing

 rebatelevels because they viewthe status quo policy as favoringwealthy consumers. Weare able to evaluate the allocative impacts of moving from the status quo policy to a reduced rebate level policy, such as alternative Policy 2, which achieves a uniform reduction of \$500 in all rebates. What we observed is that allocative equity does not change greatly when levels are reduced. We use the percent of rebates allocated to consumers with incomes of less than $\$ 75,000$ as a measure of allocative equity. The status quo policy allocates 42%of rebates to consumers with incomes less than $\$ 75,000$ whilePolicies 1 and 2 also allocate approximately 42% to similar consumers.

5.3 The Effect of a Vehicle Price Cap on Rebate Eligibility

Recently policymakers at the California Air Resources Board have proposed a price cap as means to increase the effectiveness and equity of California's rebate policy. Such a policy design would allowonly vehicles belowa certain pricelevel to qualify for a rebate. ForPolicy 3 , we consider a vehicle price cap of $\$ 60,000$, the results of which we present Tables 8,9 and 10. For the California market, Policy 3 would historically exclude only the Tesla Model S(aBEV) from a rebatebut would prospectively also exclude the PorschePanamera and the Cadillac ELR (both PHEVs) from arebate. Our vehiclechoicemodel captures the consumer responseforall ofthesevehicles.

The results of making only vehicles under a price cap of \$60,000 eligible for the current rebates are shown in Tables 8, 9 and 10 by comparingPolicy 3 with the status quo. Focusing on where the relative impacts are likely to be greatest, consider consumers with incomes over $\$ 175,000$ for Policy 3. While these wealthy consumers purchase slightly fewer additional PHEVs (377 vs. 389), they purchase many fewer BEVs (194 vs. 557) when shifting from the status quo to a price cap of $\$ 60,000$. If the policy goal was to give Tesla owners fewer rebates, then this approach appears to succeed. Smaller reductions in relative purchases of PHEVs and BEVs occur for consumers in the other income classes, reflecting the fact that fewer of them are affectedby apricecap of $\$ 60,000$.

In aggregate, the shift from the status quo to a price cap results in a reduction in the total number of additional vehicles being sold ($8,651 \mathrm{vs} .9,699$, a 10% reduction). This policy design also significantly improves the cost-effectiveness of each additional vehicle sold, causing the cost to fall substantially from $\$ 30,017$ to $\$ 22,075$, a 26% reduction. What is perhaps most surprisingishowmuch thetotal program costsfall, from \$291millionto \$191 million, a reduction of around $\$ 100$ million, or 34\%. The policy decision here may hinge on beliefs about howmuch technology from these high end vehicles gets filtered down later to other market segments, for example, with Toyota's adoption of a substantial amount of Tesla technology into a BEV version of its popular RAV 4.

5.4 Income-Tested Rebate Policies

Another proposed approach to redesigning the existing rebate program is to give consumers in lower income classes relatively higher rebates. Policymakers may choose to do this because either they know that targeting rebates towards consumers with lower ex ante
values will improve cost-effectiveness or because they are concerned about improving this program's allocativeequity. Thereare several designs this policy could take.

Policy 4 assesses an increase in rebatelevelsbutalso acap on incomeeligibility, meaning consumers abovea specified income (\$100,000 for this policy) do not qualify for therebate. All consumers makingless than \$100,000 would receive a rebate of \$5,000 for BEVs and $\$ 3,000$ for PHEVs. Compared to the status quo policy, this policy design results in significantly more additional PEVs being sold; increasing from 9,699 to 13,471 for a 3,772, or 39\%increase. This policy design also represents an increasein cost-effectiveness, dropping from $\$ 30,017$ to $\$ 26,677$ fora $\$ 3,340$ reduction, or an 11% improvement. However, despite reduction in dollars spent per additional vehicle, the 39\%increase in theadditional number of vehicles sold caused the total cost of this policy design to increase from $\$ 291$ million for the status quo to $\$ 359$ million, for an increase of over $\$ 68$ million, or 23%. Allocative equity increases from 42% for the status quo policy to 73% for this policy. Thus, this policy design improvesthenumber of additional PEVssold, policy cost-effectiveness, andallocativeequity but it does substantially increase the total cost of the program.

We next consider a progressive rebate schedule, which is designed to bring down total program cost. Policy 5 offers progressive rebate levels with an income cap. For BEVs, this policywould offer consumersmaking1) less than $\$ 25,000$, arebateof $\$ 7,500,2$) $\$ 25,000$ $\$ 50,000$, a rebate of $\$ 5,000,3) \$ 50,000-\$ 75,000$, a rebate of $\$ 2,000$, and 4) over $\$ 75,000$, no rebate. Consumers purchasing a PHEV in these same income categories would receive $\$ 4,500$, $\$ 3,000$, and $\$ 1,000$, respectively. This policy results in approximately the same number of additional PEVsbeing sold as does the status quo policy: 9,434 vehicles compared to 9,699 vehicles for the status quo. This policy is also among the most cost-effective, comparable to the price cap policy (3) at $\$ 22,743$ per additional PEV compared to $\$ 22,075$ for the price cap policy. Its total policy costs are also among the lowest of any policy considered so far. This policy has total cost of $\$ 215$ million compared to $\$ 291$ million for thestatusquo policy, areduction of $\$ 77$ million or 26%. This policy scores 100% on our allocative equity measure since all of the rebates go to consumers making less than $\$ 75,000$. Policy 5 is therefore superior to the status quo policy along all policy performance dimensions.

5.5 Income-Tested Policies with Price Caps

Lastly, we may try to improve these income-tested policies by adding price caps. Intuitively, we expect the addition of a vehicle price cap to reduce the number of additional vehicles sold but also to improve the cost-effectiveness measure, reduce total costs, and possibly toimproveallocativeequity.

Policy 6 evaluates the addition of a vehicle price cap of \$60,000 to Policy 4 (Policy 4 generated the largest number of additional PEVs purchased, improved cost-effectiveness, and allocative equity but did so at the largest program costs.). Adding a vehicle price cap as in Policy 6 causes approximately 1,000 fewervehicles to bepurchased compared to Policy 4 but thisstill representsa 2,753 or a 28\%increasein additional vehicles purchased over the status quo policy. Cost-effectiveness improves significantly fallingfrom $\$ 26,667$ to $\$ 21,349$ per additional vehiclepurchased when comparingpolicies4and6. Allocativeequityisabout the same across the policies 4 and 6 . However, total program cost falls dramatically from $\$ 360$ million to $\$ 266$ million, a $\$ 54$ million or 15% reduction comparing policies 4 and 6. It should be noted that Policy 6 costs of $\$ 266$ million are less than the $\$ 291$ million of the status quo program. Policy 6 represents an improvement over the status quo policy along all performancedimensions.

Policy 7 adds a vehicle price cap to Policy 5, which has a progressive rebate schedule capping incomeeligibility at $\$ 75,000$. Recall that Policy 5 was already superior to thestatus quo policy along all dimensions. However, adding the vehicle price cap reduces the additional number of vehicles sold to 8,837 from 9,699 under the status quo policy, a reduction of 862 vehicles or 9%. While a net reduction in the number additional vehicles sold may be viewed as an unacceptable consequence of this policy by some, it does produce the greatest improvement in policy cost-effectiveness, reducing public dollars spent per additional vehicle from $\$ 30,017$ to $\$ 18,910$, areduction of $\$ 11,007$ or 37% pervehicle. It also reduces the total program costsfrom $\$ 291$ million to $\$ 167$ million, a savings of $\$ 124$ million, or 43%.

6 Conclusion

Ourobjectivehasbeen toillustratehowcommonlyused "second-best" policies canleverage several types of heterogeneity across consumers or products in order improve policy performance. Theseincludedifferences in consumers' ex antevalue(i.e., willingnessto pay) for specific technologies, their marginal utility of income, and the price levels of the technologies. These difference can be used to improve a broader set of policies that rely on pricesubsidies, rebates, tax credits, sales tax exemptions, and subsidizedfinancingto target consumers'adoption of technologiessuch as alternativefuels and vehicles, energy and water efficient technologies, and renewable energy technologies, among others.

As we show, the economic information needed to identify howto incorporate consumer heterogeneity can be obtained from relatively simple empirical consumer choice studies. Even in the case of mis-measurement, e.g., if the estimated price elasticity of demand is inaocurately estimated, the basic tenants of our theoretical model and proposed policy mod-
still hold. The results of our policy simulations would be the same in direction though likely of increased or decreased magnitude.

Our basic approach enables economists to identify feasible superior policy designs. Our specificanalysis suggeststhat policymakerscanre-designPEV rebateprogramssuch asCalifornia's to induce the sale of more PEVs, achieving greater allocative equity at a lower total cost to the state taxpayers. First, we focus on two policy designs that have the ability to 1) increasetotal or hold constant the additional PEVspurchased, 2) decreasetotal government costs, and 3) increase allocative equity. Our analysis of Policy 5 shows that without a significantreduction in thenumber of additional PEVspurchased, wecould dramaticallyincrease allocative equity while saving $\$ 77$ million compared to the current policy. Similarly, Policy 6 offers the greatest number of additional PEVs sold (28% greater than the status quo) for a policy that costs less (by 9%) than the status quo policy.

References

Axsen, J ohn and Kenneth S. Kurani (2009), "Early U.S. market for plug-in hybrid electric vehicles," Transportation Research Record: Journal ofthe Transportation Research Board, 2139(1): 64-72.

Babaee, Samaneh, Ajay S. Nagpure, and J oseph F. DeCarolis(2014), "Howmuch do electric drive vehicles matter to future US emissions?" Environmental Science \& Technology, 48(3): 1382-1390.

Beresteanu, Arie, and Shanjun Li (2011), "Gasoline prices, government support, and the demand for hybrid vehicles in the United States," International Economic Review 52(1): 161-182.

Bollinger, Bryan and Kenneth Gillingham (2012), "Peer effects in the diffusion of solar photovoltaic panels", Marketing Science, 31(6): 900-912.

Bordley, RobertF. (1993),"Estimatingautomotiveelasticitiesfrom segment elasticities and first choice/ second choice data," The Review of Economics and Statistics, 75(3): 455-462.

Brownstone, David, David S. Bunch, and Kenneth Train (2000), "J oint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B, 34: 315-338.

Bunch, David S., Mark Bradley, Thomas F. Golob, and Ryuichi Kitamura (1993), "Demand for clean-fuel vehicles in California: a discrete-choice stated preference pilot project," Transportation Research Part A, 27A(3): 237-253.

Bunch, DavidS. andAmineMahmassani (2009), "Follow-ondevelopmentofCARBITS: aresponse model for theCalifornia passenger vehiclemarket," Final Report for the California Air Resources Board.

Busse, Meghan, J orge Silva-Risso, and Florian Zettelmeyer (2006), "\$1,000 cash back: the pass-through of auto manufacturer promotions," The American Economic Review 96(4): 1253-1270.

California Department of Transportation (Caltrans) (2013), "California household travel surveyfinal survey report."

Congressional Budget Office (CBO) (2012), "Effects of federal tax credits for the purchase of electric vehicles," Technical Report bytheCongress of theUnited States Congressional Budget Office, September 2012.

Chandra, Ambarish, Sumeet Gulati, and Milind Kandlikar (2010), "Green drivers or freeriders? An analysis of tax rebates for hybrid vehicles," Journal of Environmental Economics and Management, 60(2): 78-93.

Chetty, Raj, Adam Looney, and Kory Kroft (2009), "Salience and taxation: theory and evidence,"American Economic Review, 99(4), 1145-1177.

CaliforniaNewCarDealersAssociation(CNCDA) (2013), "Californiaautooutlook: covering fourth quarter 2013."

Diamond, David (2009), "Theimpact of government incentives for hybrid-electric vehicles: evidencefromUSstates,"Energy Policy, 37(3): 972-983.

Diamond, Peter A. (1970), "Incidence of an interest income," Journal of Economic Theory, 2(3): 211-224.

Fischer, Carolyn, and Richard G. Newell (2008), "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, 55(2): 142-162.

Gallagher, Kelly Sims, and Erich Muehlegger (2011), "Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology," Journal of Environmental Economics and Management, 61(1): 1-15.

Gayer, Ted, and Emily Parker (2013), "Cash for clunkers: an evaluation of the car allowance rebate system," Economic Studies at Brookings, 2013(9). http:// www.brookings.edu/ research/papers/ 2013/ 10/ cash-for-clunkers-evaluation-gayer.

Gillingham, Kenneth, Richard Newell, and Karen Palmer (2006), "Energy efficiency policies: aretrospectiveexaminiation,"Annual ReviewofEnvironmentand Resources 31: 161-192.

Graff Zivin, J oshua S., Matthew J. Kotchen, and Erin T. Mansur (2014), "Spatial and temporal heterogeneity of marginal emissions: implications for electric cars and other electricity-shiftingpolicies," Journal of Economic Behavior \& Organization, 107(A): 248268.

Hess, Alan C(1977), "A comparison of automobiledemand equations," Econometrica 45(3): 683-701.

Heutel, Garth, and Erich Muehlegger (2015), "Consumer learning and hybrid vehicleadoption," Environmental and Resource Economics, 62: 125-161.

Hidrue, Michael K., George R. Parsons, Willett Kempton, and Meryl P. Gardner (2011), "Willingness to pay for electric vehicles and their attributes," Resource and Energy Economics, 33: 686-705.

Holland, Stephen, Erin T. Mansur, Nicholas Z. Muller, and Andrew J. Yates (2015), "Environmental benefits from driving electric vehicles," NBER Working Paper 21291. http:// www.nber.org/ papers/ w21291

Huang, Edward (2010), "Do public subsidies sell green cars? Evidence from the U.S. 'Cash for Clunkers' program," Social Science Research Network, http:// ssrn.com/ abstract=1591323.

J aff Adam B., Richard G. Newell and Robert N. Stavins (2002), "Environmental policy and technological change," Environmental and Resource Economics, 22: 41-69.

J aff Adam B., Richard G. Newell and Robert N. Stavins (2005), "A tale of two market failures: technology and environmental policy," Ecological Economics, 54(2-3): 164-174.

J enn, Alan, Inês L. Azevedo, and Pedro Ferreira (2013), "The impact of federal incentives on the adoption of hybrid electric vehicles in the United States," Energy Economics, 40: 936-942.

Kurani, Kenneth S., ThomasTurrentine, andDaniel Sperling(1996), "Testingelectricvehicle demand in hybrid households' using a reflexive survey," Transportation Research Part D, 1(2):131-150.

Li, Shanjun, J oshuaLinn, and ElishebaSpiller(2013), "Evaluating'Cash-for-Clunkers': program effects on auto sales and the environment," Journal of Environmental Economics and Management, 65(2): 175-193.

Mian, Atif, and Amir Sufi (forthcoming), "The effects of fiscal stimulus: evidence from the 2009 'Cash for Clunkers’ program," Quarterly Journal of Economics.

Michalek, J eremyJ ., Mikhail Chester, PaulinaJ aramillo, ConstantineSamaras, Ching-Shin Norman Shiau, and Lester B. Lave (2011), "Valuation of plug-in vehicle life-cycle air emissions and oil displacement benefits," Proceedings of the National Academy of Sciences 108(40): 16554-16558.

McCarthy, Patrick S. (2006), "Market price and income elasticities of new vehicle demands," The Review ofEconomics and Statistics 78(3): 543-547.

Sallee, J ames M. (2011), "The surprising incidence of tax credits for the Toyota Prius," American Economic Journal: Economic Policy, 3(2): 189-219.

Sheldon, TamaraL., J.R. DeShazo, and RichardT. Carson (2015), "Electric \&plug-in hybrid vehicle demand: lessons for an emerging market," Working Paper, University of South Carolina, Columbia, SC.

Sierzchula, William, Sjoerd Bakker, Kees Maat, and Bert van Wee (2014), "The infl ce of financial incentives and other socio-economic factors on electric vehicle adoption," Energy Policy 68: 183-194.

Stoneman, Paul, and Paul Diederen (1994), "Technology diffusion and public policy," The Economic Journal 104(425): 918-930.

Tessum, ChristopherW.,J ason D. Hill, andJ ulian D. Marshall (2014), "Lifecycleair quality impacts of conventional and alternative light-duty transportation in the United States," Proceedings of the National Academy of Sciences 111(52): 18490-18495.

Figures and Tables

Figure 1: Marginal versus Non-Marginal PEV PurchaseProbability

Figure 2: New Car Buyer Survey: Top Vehicle Choice

If the set of vehicles to choose from were those in the table below, what would your choice be? For QC: 'MercedesBenzcompactsedan2','Nissancompactsedan1','AudicompactSUV5','MitsubishicompactSUV1','Volkswagencompacts					
	Vehicle 1	Vehicle 2	Vehicle 3	Vehicle 4	Vehicle 5
Brand and Model	Mercedes Benz C-Class Sedan	Nissan Sentra Sedan	Audi SQ5 SUV	Mitsubishi Outlander Sport SUV	Volkswagen Tiguan SUV
Refueling cost (per mile)	\$0.18	\$0.15	\$0.20	\$0.17	\$0.22
Purchase price	\$35,350	\$15,990	\$51,900	\$19,470	\$22,995
Select your first choice	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
Next					

Figure 3: New Car Buyer Survey: Top Vehicle Choice

Here are the vehicles you selected earlier as your top choices. From these, please pick your overall first choice and second choice of vehicle that you would be most likely to purchase if you were purchasing a new vehicle now.				
For QC: 'Fordcompactsedan2','Hondacompactsedan1','Nissancompactsedan1','ToyotacompactSUV1'				
	Vehicle 1	Vehicle 2	Vehicle 3	Vehicle 4
Brand and Model	Ford Focus Sedan	Honda Civic Sedan	Nissan Sentra Sedan	Toyota RAV4 SUV
Refueling cost (per mile)	\$0.15	\$0.14	\$0.15	\$0.17
Purchase price	\$16,310	\$18,165	\$15,990	\$23,300
Select your first choice	-	\bigcirc	-	-
Select your second choice	0	\odot	0	\bigcirc

Figure 4: New Car Buyer Survey: PEV vs. Conventional Vehicle Choice Module

Please choose the vehicle you would be most likely to purchase if you were purchasing a new vehicle.					
	Vehicle 1	Vehicle 2	Vehicle 3	Vehicle 4	Vehicle 5
Fuel Type	gasoline	all-electric	all-electric	dual-fuel	dual-fuel
Brand and Model	Toyota RAV4 SUV				
Electric range	0 miles	75 miles	200 miles	60 miles	10 miles
Gasoline range	300 miles	0 miles	0 miles	300 miles	300 miles
Fuel cost per gasoline mile	\$0.18	n/a	n/a	\$0.12	\$0.08
	Like $\$ 4.40$ gal gas			Like $\$ 2.80$ gal gas	Like $\$ 2.00$ gal gas
Fuel cost per electric mile	n/a	\$0.06	\$0.06	\$0.04	\$0.06
		Like $\$ 1.50$ gal gas	Like $\$ 1.50$ gal gas	Like $\$ 0.90$ gal gas	Like $\$ 1.50$ gal gas
HOV Access	No	No	No	Yes	Yes
Purchase Price	\$23,300	\$29,125	\$34,950	\$26,795	\$24,465
Select your top choice	0	\bigcirc	0	\bigcirc	\bigcirc
					Next

Table 1: Attribute Levels

Purchase Price ${ }^{1}$ (\% of conventional)	
Gasoline	100\%
BEV	105\%, 115\%, 125\%, 150\%
PHEV	105\%, 115\%, 125\%, 150\%
Gasoline Refuel Cost (\$ per gal)	
Gasoline ${ }^{2}$ \$4.00, \$4.40, \$4.80, \$5.60	
BEV	n/a
PHEV ${ }^{3}$	\$2.00, \$2.20, \$2.40, \$2.80
Electric Refuel Cost ${ }^{4}$ (\$ per gal equivalent)	
Gasoline n / a	
BEV	\$0.90, \$1.10, \$1.50, \$2.50
PHEV \$	\$0.90, \$1.10, \$1.50, \$2.50
Gasoline Range (miles)	
Gasoline	300
BEV	300
PHEV	0
Electric Range (miles)	
Gasoline	n/a
BEV	50, 75, 100, 200
PHEV	10, 20, 40, 60
HOV Access	
Gasoline	no
BEV	no, yes
PHEV	no, yes

[^12]Table 2: UCLA New Car Buyer Survey Population ${ }^{\dagger}$

	Caltrans Survey, Full Population, Weighted Population	Caltrans Survey, New Car Buyers, Weighted Population	UCLA New Car Buyer Survey, Weighted Population
Household Size			
1 person	24.5\%	16.3\%	13.2\%
2 people	30.0\%	30.2\%	33.5\%
3 people	16.4\%	18.7\%	19.8\%
More than or equal to 4 people	29.1\%	34.9\%	33.4\%
Number of Household Vehicles			
None	8.0\%	3.7\%	2.8\%
1	32.7\%	26.3\%	29.6\%
2	37.2\%	42.9\%	42.3\%
More than or equal to 3 vehicles	22.0\%	27.2\%	25.3\%
Ethnicity			
White	68.7\%	75\%	75.3\%
African American	4.4\%	4\%	6.5\%
Multi-Racial	7.1\%	3\%	1.5\%
Other	19.8\%	18.6\%	16.8\%
Household Ownership			
Own	72.2\%	76.8\%	62.0\%
Rent	27.6\%	23.0\%	35.0\%
Other	0.1\%	0.0\%	2.9\%
Income			
<10k	5.6\%	2.9\%	5.1\%
10-25k	16.2\%	9.8\%	7.6\%
25k-35k	10.4\%	7.4\%	7.7\%
35k-50k	13.6\%	11.7\%	9.4\%
50k-75k	15.9\%	16.1\%	16.9\%
75k-100k	12.8\%	15.2\%	22.5\%
100k-150k	11.9\%	16.1\%	18.8\%
>150k	13.6\%	21.0\%	12.1\%
Drivers in Household			
None	4.9\%	1.6\%	0.3\%
1	30.9\%	23.2\%	19.4\%
2	45.2\%	50.9\%	51.1\%
3	13.9\%	17.4\%	16.3\%
More than or equal to 4 drivers	5.2\%	6.8\%	6.8\%
Sex			
Male	48.2\%	49.1\%	51.3\%
Female	51.8\%	50.7\%	48.5\%
Age			
Under 18	24.2\%	0.1\%	0.0\%
18-24	10.2\%	2.0\%	16.2\%
25-54	38.5\%	50.8\%	58.0\%
55-64	10.7\%	27.7\%	14.0\%
65 or over	16.5\%	19.4\%	10.2\%
Employment			
Employed	54.0\%	66.7\%	63.3\%
Unemployed	46.0\%	32.9\%	36.7\%

Table 2: UCLA New Car Buyer Survey Population, ${ }^{\dagger}$ continued from previous page

	Caltrans Survey, Full Population, Weighted Population	Caltrans Survey, New Car Buyers, Weighted Population	UCLA New Car Buyer Survey, Weighted Population
Household Type			
Single family, detached	69.2\%	74.9\%	64.9\%
Single family, attached	7.8\%	7.3\%	9.9\%
Mobile Home	3.3\%	1.9\%	2.6\%
Building with 2 or more apartments	19.5\%	15.7\%	22.2\%
Boat, RV, Van, etc.	0.0\%	0.0\%	0.2\%
Education			
Not a high school graduate, 12 grade or less	7.4\%	3.4\%	7.1\%
High school graduate	14.8\%	11.0\%	24.7\%
Some college credit but no degree	18.7\%	18.1\%	23.2\%
Associate or technical school degree	11.4\%	11.0\%	10.6\%
Bachelor's or undergraduate degree	26.2\%	30.4\%	21.0\%
Graduate or professional degree	21.4\%	26.0\%	13.2\%
Vehicle Body Type			
Sedan	47.7\%	46.3\%	42.2\%
SUV	18.0\%	19.9\%	28.3\%
Truck	11.5\%	10.5\%	3.1\%
Coupe	6.5\%	6.2\%	6.4\%
Convertible	1.2\%	1.4\%	9.8\%
Hatchback	3.6\%	3.7\%	5.6\%
Wagon	3.1\%	3.3\%	2.3\%
Minivan or Van	8.3\%	8.7\%	2.2\%

[^13]Table3: Estimation Results: Brand Choice

	Actual CA Market Share	Weighted Survey Share	Probability of Purchase as Estimated by a Rank-Ordered Logit						
			All Incomes	Income Under $\$ 25 \mathrm{k}$	Income $\$ 25-\$ 50 \mathrm{k}$	Income $\$ 50-\$ 75 \mathrm{k}$	Income \$75-\$100k	Income $\$ 100-\$ 175 k$	Income Over \$175k
Acura	1.4\%	3.0\%	2.7\%	2.7\%	2.2\%	3.3\%	2.3\%	2.6\%	4.2\%
Audi	1.7\%	3.8\%	3.2\%	4.7\%	1.1\%	2.8\%	3.0\%	2.8\%	9.4\%
BMW	4.0\%	5.0\%	4.5\%	3.1\%	3.1\%	3.6\%	4.1\%	6.3\%	8.4\%
Buick	0.5\%	1.7\%	1.3\%	1.9\%	0.5\%	1.3\%	0.3\%	2.6\%	1.8\%
Cadillac	0.8\%	1.4\%	1.1\%	1.5\%	0.6\%	2.4\%	0.7\%	0.8\%	1.3\%
Chevrolet	7.4\%	9.0\%	8.8\%	7.4\%	9.7\%	8.8\%	11.1\%	7.6\%	4.9\%
Chrysler	0.6\%	1.6\%	1.2\%	2.1\%	1.7\%	0.6\%	0.9\%	1.4\%	0.5\%
Dodge	2.2\%	2.7\%	2.7\%	5.7\%	3.3\%	2.7\%	2.3\%	1.2\%	2.4\%
Fiat	0.5\%	0.7\%	1.0\%	3.3\%	0.4\%	0.2\%	0.5\%	1.3\%	0.0\%
Ford	10.8\%	10.8\%	10.9\%	10.8\%	9.5\%	10.0\%	12.5\%	12.3\%	6.5\%
GMC	1.4\%	1.7\%	1.6\%	3.0\%	3.1\%	0.9\%	0.7\%	1.2\%	0.8\%
Honda	12.1\%	15.2\%	15.4\%	16.9\%	15.5\%	17.4\%	17.1\%	12.2\%	12.5\%
Hyundal	3.9\%	2.9\%	3.3\%	1.9\%	5.0\%	3.7\%	2.2\%	4.1\%	1.7\%
Infinit	0.9\%	1.2\%	1.1\%	1.1\%	1.0\%	0.6\%	2.1\%	0.9\%	0.1\%
Jaguar	0.2\%	0.1\%	0.4\%	0.4\%	0.1\%	0.0\%	0.3\%	0.9\%	0.2\%
Jeep	1.9\%	1.6\%	1.7\%	2.2\%	2.1\%	2.3\%	1.1\%	1.5\%	1.3\%
Kia	3.4\%	1.7\%	2.0\%	2.8\%	2.5\%	1.9\%	1.5\%	1.9\%	0.5\%
LandRover	0.5\%	0.6\%	0.8\%	0.1\%	1.2\%	1.4\%	0.8\%	0.5\%	1.0\%
Lexus	3.2\%	3.1\%	3.4\%	1.2\%	4.7\%	2.9\%	2.9\%	3.9\%	6.2\%
Lincoln	0.3\%	0.5\%	0.8\%	1.8\%	0.0\%	0.2\%	0.7\%	1.3\%	0.8\%
Mazda	2.2\%	1.5\%	1.3\%	0.7\%	2.3\%	0.6\%	0.6\%	2.0\%	1.1\%
Mercedes	3.2\%	2.2\%	2.0\%	0.3\%	2.0\%	1.6\%	1.7\%	2.7\%	4.0\%
MINI	0.8\%	0.6\%	0.5\%	0.3\%	0.2\%	0.7\%	0.2\%	1.2\%	0.3\%
Mitsubishi	0.4\%	0.2\%	0.6\%	0.6\%	0.8\%	1.4\%	0.5\%	0.0\%	0.0\%
Nissan	7.5\%	4.2\%	4.6\%	3.9\%	5.1\%	5.7\%	4.8\%	4.0\%	2.8\%
Porsche	0.6\%	0.2\%	0.4\%	0.2\%	0.1\%	0.6\%	0.3\%	0.3\%	1.5\%
Scion	1.0\%	0.8\%	1.2\%	2.8\%	0.5\%	1.5\%	1.8\%	0.3\%	0.7\%
Smart	1.0\%								
Subaru	2.5\%	2.6\%	2.2\%	1.4\%	3.1\%	1.3\%	1.3\%	2.4\%	5.7\%
Tesla	0.5\%	0.6\%							
Toyota	17.5\%	15.8\%	16.4\%	12.5\%	16.2\%	17.3\%	17.9\%	16.2\%	16.7\%
Volkswagen	3.4\%	2.0\%	2.1\%	1.7\%	2.1\%	1.0\%	2.9\%	2.7\%	1.2\%
Volvo	0.4\%	0.9\%	0.9\%	0.9\%	0.5\%	1.4\%	0.7\%	0.8\%	1.5\%

Table4: Estimation Results: Body Choice

Variable	Estimated Coefficient
Compact Sedan	$1.662^{* * *}$
Midsize Sedan	(0.108)
	$1.690^{* * *}$
Full-size Sedan	(0.108)
	$1.028^{* * *}$
Compact SUV	(0.111)
	$1.455^{* * *}$
Midsize SUV	(0.110)
	$1.295^{* * *}$
Full-sizeSUV	(0.112)
	$0.667^{* * *}$
Van or Minivan	(0.118)
	$-0.497^{* * *}$
Hatchback	(0.163)
Wagon	$0.616^{* * *}$
	(0.126)
Compact *Number Children	$-0.394^{* *}$
	(0.157)
Midsize*Number Children	$-0.201^{* * *}$
Sportscar*Number Vehicles	(0.049)
Observations	$-0.171^{* * *}$
Standard errors in parentheses	
*** p<0.01, ** p<0.05, $* p<0.1$	
	(0.051)
	$0.248^{* * *}$
	(0.030)
	28,959

Table 5: Estimation Results: Body Choice

Body Type	Average Probability
Compact Sedan	15.2%
Midsize Sedan	16.0%
Full-size Sedan	9.5%
Compact SUV	12.8%
Midsize SUV	11.1%
Full-size SUV	6.8%
Wagon	2.4%
Hatchback	5.7%
Coupe	7.5%
Van or Minivan	2.2%
Truck	3.5%
Convertible	7.3%

Table6: Estimation Results: VehicleChoice

Variable	Estimated Coefficient
Vehicle Price*Income Under \$25k	-0.075***
	(0.028)
VehiclePrice*Income ${ }^{\text {25-50k }}$	-0.062***
	(0.023)
VehiclePrice*Income \$50-75k	-0.048***
	(0.016)
VehiclePrice*Income \$75-100k	-0.054***
	(0.018)
VehiclePrice*Income \$100-175k	-0.038***
	(0.014)
Vehicle Price*Income Over \$175k	-0.089***
	(0.025)
BEV*SedanHatchback	-1.989***
	(0.205)
BEV*SUV	-2.090***
	(0.250)
BEV*Sportcar	-2.208***
	(0.278)
BEV*VanTruck	-1.687***
	(0.336)
PHEV	-0.333**
	(0.167)
Range	0.009***
	(0.001)
Refuel	-0.038
	(0.041)
HOV	0.261***
	(0.058)
Observations	24,940
Robust standard errors in parentheses *** $\mathrm{p}<0.01,{ }^{* *} \mathrm{p}<0.05, * \mathrm{p}<0.1$	

Table 7: State Level Incentives

State	CA	CO	GA	IL	LA
Incentive type	Rebate	Tax Credit	Tax Credit	Rebate	Tax Credit
Maximum amount for PHEV	$\$ 1,500$	$\$ 6,000.00$	$\$ 0.00$	$\$ 4,000.00$	$\$ 3,000.00$
Maximum amount for BEV	$\$ 2,500$	$\$ 6,000.00$	$\$ 5,000.00$	$\$ 4,000.00$	$\$ 3,000.00$
Maximum amount for a Chevrolet Volt (\$35,170 for a 2015 model, 17.1 kwh)	$\$ 1,500$	$\$ 4,731.57$	$\$ 0.00$	$\$ 3,517.00$	$\$ 3,000.00$
Maximum amount for a Nissan LEAF ($\$ 29,010$ for 2015 model, 24 kwh)	$\$ 2,500$	$\$ 5,162.40$	$\$ 5,802.00$	$\$ 2,901.00$	

State	MD	MA	NJ	PA	SC
Incentive type	Tax Credit	Rebate	Sales Tax Exemption	Rebate	Tax Credit
Maximum amount for PHEV	\$3,000	\$2,500.00	N/A	\$2,000.00	\$2,000.00
Maximum amount for BEV	\$3,000	\$2,500.00	N/A	\$2,000.00	\$0.00
Maximum amount for a Chevrolet Volt ($\mathbf{\$ 3 5}, 170$ for a 2015 model, 17.1 kwh)	\$2,138	\$2,500.00	\$0.00	\$2,000.00	\$2,000.00
Maximum amount for a Nissan LEAF (\$29,010 for 2015 model, 24 kwh)	\$3,000	\$2,500.00	\$2,030.70	\$2,000.00	\$0.00
How is it determined?	\$125 per kWh battery capacity	Fixed, by battery capacity	Zero-emission vehicles	By battery capacity (PHEVs with battery capacity less than 10 kwh receives \$1,000	Base tax credit is \$667 for a car that has 4 kwh batteries. Each add'tl kwh receives another $\$ 111$.

State	TX	UT	WA	WV
Incentive type	Rebate	Tax Credit	Sales Tax Exemption	Tax Credit
Maximum amount for PHEV	$\$ 2,500$	$\$ 605.00$	$\mathrm{~N} / \mathrm{A}$	$\$ 7,500.00$
Maximum amount for BEV	$\$ 2,500$	$\$ 605.00$	$\mathrm{~N} / \mathrm{A}$	$\$ 7,500.00$
Maximum amount for a Chevrolet Volt (\$35,170 for a 2015 model, 17.1 $\mathbf{k w h})$	$\$ 2,500$	$\$ 605.00$	$\$ 0.00$	$\$ 7,500.00$
Maximum amount for a Nissan LEAF ($\$ 29,010$ for 2015 model, 24 kwh)	$\$ 2,500$	$\$ 605.00$	$\$ 87.03$	$\$ 7,500.00$
How is it determined?	Fixed for eligible models	Fixed	Vehicles that run exclusively on electricity, natural gas, propane and other alternative fuels	35% against purchase price up to $\$ 7,500$

Table 8: PEVs Sold by Type of Policy

Policy	Income	$\begin{gathered} \text { BEV } \\ \text { Rebate } \end{gathered}$	PHEV Rebate	Baseline BEVs Sold	Baseline PHEVs Sold	Addt'I BEVs Sold	Addt'I PHEVs Sold	Additional PEVs Sold	Total PEVs Sold
	Under \$25k	\$2,500	\$1,500	2,899	6,203	473	719	9,699	158,335
	\$25-\$50k	\$2,500	\$1,500	6,065	18,191	775	1,278		
	\$50-\$75k	\$2,500	\$1,500	10,313	18,667	664	963		
	\$75-\$100k	\$2,500	\$1,500	6,349	16,981	645	1,001		
	\$100-\$175k	\$2,500	\$1,500	19,822	35,735	985	1,250		
	Over \$175k	\$2,500	\$1,500	4,060	3,371	557	389		
	Under \$25k	\$2,000	\$2,000	2,899	6,203	373	805	10,602	159,258
	\$25-\$50k	\$2,000	\$2,000	6,065	18,191	614	1,716		
	\$50-\$75k	\$2,000	\$2,000	10,313	18,667	528	1,290		
	\$75-\$100k	\$2,000	\$2,000	6,349	16,981	512	1,342		
	\$100-\$175k	\$2,000	\$2,000	19,822	35,735	784	1,670		
	Over \$175k	\$2,000	\$2,000	4,060	3,371	440	526		
	Under \$25k	\$2,000	\$1,000	2,899	6,203	373	512	6,999	155,655
	\$25-\$50k	\$2,000	\$1,000	6,065	18,191	614	846		
	\$50-\$75k	\$2,000	\$1,000	10,313	18,667	528	639		
	\$75-\$100k	\$2,000	\$1,000	6,349	16,981	512	664		
	\$100-\$175k	\$2,000	\$1,000	19,822	35,735	784	832		
	Over \$175k	\$2,000	\$1,000	4,060	3,371	440	255		
	Under \$25k	\$2,500	\$1,500	2,899	6,203	410	719	8,651	157,308
	\$25-\$50k	\$2,500	\$1,500	6,065	18,191	649	1,269		
	\$50-\$75k	\$2,500	\$1,500	10,313	18,667	515	944		
	\$75-\$100k	\$2,500	\$1,500	6,349	16,981	507	995		
	\$100-\$175k	\$2,500	\$1,500	19,822	35,735	847	1,227		
	Over \$175k	\$2,500	\$1,500	4,060	3,371	194	377		
	Under \$25k	\$5,000	\$3,000	2,899	6,203	1,016	1,515	13,471	162,128
	\$25-\$50k	\$5,000	\$3,000	6,065	18,191	1,629	2,610		
	\$50-\$75k	\$5,000	\$3,000	10,313	18,667	1,370	1,954		
	\$75-\$100k	\$5,000	\$3,000	6,349	16,981	1,342	2,036		
	\$100-\$175k	\$0	\$0	19,822	35,735	-	-		
	Over \$175k	\$0	\$0	4,060	3,371	-	-		
	Under \$25k	\$7,500	\$4,500	2,899	6,203	1,635	2,392	9,434	158,090
	\$25-\$50k	\$5,000	\$3,000	6,065	18,191	1,629	2,610		
	\$50-\$75k	\$2,000	\$1,000	10,313	18,667	528	639		
	\$75-\$100k	\$0	\$0	6,349	16,981	-	-		
	\$100-\$175k	\$0	\$0	19,822	35,735	-	-		
	Over \$175k	\$0	\$0	4,060	3,371	-	-		
	Under \$25k	\$5,000	\$3,000	2,899	6,203	888	1,515	12,452	161,108
	\$25-\$50k	\$5,000	\$3,000	6,065	18,191	1,377	2,591		
	\$50-\$75k	\$5,000	\$3,000	10,313	18,667	1,075	1,915		
	\$75-\$100k	\$5,000	\$3,000	6,349	16,981	1,069	2,023		
	\$100-\$175k	\$0	\$0	19,822	35,735	-	-		
	Over \$175k	\$0	\$0	4,060	3,371	-	-		
	Under \$25k	\$7,500	\$4,500	2,899	6,203	1,442	2,392	8,837	157,493
	\$25-\$50k	\$5,000	\$3,000	6,065	18,191	1,377	2,591		
	\$50-\$75k	\$2,000	\$1,000	10,313	18,667	408	626		
	\$75-\$100k	\$0	\$0	6,349	16,981	-	-		
	\$100-\$175k	\$0	\$0	19,822	35,735	-	-		
	Over \$175k	\$0	\$0	4,060	3,371	-	-		

Table 9: PEV Rebate Costs by Type of Policy

Policy	Income	BEV Rebate	PHEV Rebate	BEV Budget	PHEV Budget	Total PEVs Sold	Total Cost (\$ Millions)
	Under \$25k	\$2,500	\$1,500	\$8,431,349	\$10,383,030	158,335	\$291
	\$25-\$50k	\$2,500	\$1,500	\$17,101,072	\$29,202,579		
	\$50-\$75k	\$2,500	\$1,500	\$27,442,629	\$29,444,460		
	\$75-\$100k	\$2,500	\$1,500	\$17,484,884	\$26,973,264		
	\$100-\$175k	\$2,500	\$1,500	\$52,018,618	\$55,478,170		
	Over \$175k	\$2,500	\$1,500	\$11,541,233	\$5,639,740		
	Under \$25k	\$2,000	\$2,000	\$6,545,083	\$14,016,504	159,258	\$319
	\$25-\$50k	\$2,000	\$2,000	\$13,358,461	\$39,813,000		
	\$50-\$75k	\$2,000	\$2,000	\$21,681,786	\$39,913,772		
	\$75-\$100k	\$2,000	\$2,000	\$13,721,774	\$36,646,760		
	\$100-\$175k	\$2,000	\$2,000	\$41,213,544	\$74,811,156		
	Over \$175k	\$2,000	\$2,000	\$9,000,554	\$7,793,533		
	Under \$25k	\$2,000	\$1,000	\$6,545,083	\$6,714,527	155,655	\$208
	\$25-\$50k	\$2,000	\$1,000	\$13,358,461	\$19,036,334		
	\$50-\$75k	\$2,000	\$1,000	\$21,681,786	\$19,305,549		
	\$75-\$100k	\$2,000	\$1,000	\$13,721,774	\$17,644,670		
	\$100-\$175k	\$2,000	\$1,000	\$41,213,544	\$36,566,955		
	Over \$175k	\$2,000	\$1,000	\$9,000,554	\$3,626,610		
	Under \$25k	\$2,500	\$1,500	\$5,525,708	\$8,734,800	157,308	\$191
	\$25-\$50k	\$2,500	\$1,500	\$12,516,008	\$26,627,751		
	\$50-\$75k	\$2,500	\$1,500	\$12,416,557	\$20,625,015		
	\$75-\$100k	\$2,500	\$1,500	\$11,125,314	\$23,355,006		
	\$100-\$175k	\$2,500	\$1,500	\$26,472,618	\$40,322,793		
	Over \$175k	\$2,500	\$1,500	\$2,510,984	\$748,341		
	Under \$25k	\$5,000	\$3,000	\$19,576,601	\$23,152,788	162,128	\$359
	\$25-\$50k	\$5,000	\$3,000	\$38,472,680	\$62,401,798		
	\$50-\$75k	\$5,000	\$3,000	\$58,415,640	\$61,862,019		
	\$75-\$100k	\$5,000	\$3,000	\$38,452,482	\$57,049,903		
	\$100-\$175k	\$0	\$0	\$0	\$0		
	Over \$175k	\$0	\$0	\$0	\$0		
	Under \$25k	\$7,500	\$4,500	\$34,009,626	\$38,679,027	158,090	\$215
	\$25-\$50k	\$5,000	\$3,000	\$38,472,680	\$62,401,798		
	\$50-\$75k	\$2,000	\$1,000	\$21,681,786	\$19,305,549		
	\$75-\$100k	\$0	\$0	\$0	\$0		
	\$100-\$175k	\$0	\$0	\$0	\$0		
	Over \$175k	\$0	\$0	\$0	\$0		
	Under \$25k	\$5,000	\$3,000	\$13,441,267	\$19,856,328	161,108	\$266
	\$25-\$50k	\$5,000	\$3,000	\$28,674,486	\$57,222,993		
	\$50-\$75k	\$5,000	\$3,000	\$27,636,150	\$44,163,728		
	\$75-\$100k	\$5,000	\$3,000	\$25,057,919	\$49,793,339		
	\$100-\$175k	\$0	\$0	\$0	\$0		
	Over \$175k	\$0	\$0	\$0	\$0		
	Under \$25k	\$7,500	\$4,500	\$24,318,527	\$33,734,336	157,493	\$167
	\$25-\$50k	\$5,000	\$3,000	\$28,674,486	\$57,222,993		
	\$50-\$75k	\$2,000	\$1,000	\$9,720,202	\$13,432,334		
	\$75-\$100k	\$0	\$0	\$0	\$0		
	\$100-\$175k	\$0	\$0	\$0	\$0		
	Over \$175k	\$0	\$0	\$0	\$0		

Table10: Comparison of PolicyPerformanceMetrics

Policy	Additional PEVs Sold	Additional PEVs Sold*	Total CostEffectiveness	Addt'I Dollar Needed to Induce One Addt'I PEV*	Total Cost (\$ Millions)	Total Cost* (\$ Millions)	Allocative Equity
	9,699	N/A	\$30,017	N/A	\$291	N/A	42\%
	10,602	$\begin{gathered} 903 \\ (+9 \%) \end{gathered}$	\$30,044	$\begin{gathered} +\$ 27 \\ (+0.09 \%) \end{gathered}$	\$319	$\begin{gathered} +\$ 27 \\ (+9.4 \%) \end{gathered}$	42\%
	6,999	$\begin{aligned} & -2,700 \\ & (-28 \%) \end{aligned}$	\$29,778	$\begin{gathered} -\$ 239 \\ (-0.7 \%) \end{gathered}$	\$208	$\begin{gathered} -\$ 83 \\ (-28 \%) \end{gathered}$	42\%
	8,651	$\begin{aligned} & -1,048 \\ & (-10 \%) \end{aligned}$	\$22,075	$\begin{gathered} -\$ 7,942 \\ (-26 \%) \end{gathered}$	\$191	$\begin{array}{r} -\$ 100 \\ (-34 \%) \end{array}$	45\%
	13,471	$\begin{gathered} 3,772 \\ (+39 \%) \end{gathered}$	\$26,677	$\begin{gathered} -\$ 3,340 \\ (-11 \%) \end{gathered}$	\$359	$\begin{gathered} +\$ 68 \\ (+23 \%) \end{gathered}$	73\%
	9,434	$\begin{aligned} & -265 \\ & (-3 \%) \end{aligned}$	\$22,743	$\begin{aligned} & -\$ 7,274 \\ & (-24 \%) \end{aligned}$	\$215	$\begin{gathered} -\$ 77 \\ (-26 \%) \end{gathered}$	100\%
	12,452	$\begin{gathered} 2,753 \\ (+28 \%) \end{gathered}$	\$21,349	$\begin{aligned} & -\$ 8,668 \\ & (-29 \%) \end{aligned}$	\$266	$\begin{gathered} -\$ 25 \\ (-8.7 \%) \end{gathered}$	72\%
	8,837	$\begin{array}{r} -862 \\ (-9 \%) \end{array}$	\$18,910	$\begin{gathered} -\$ 11,107 \\ (-37 \%) \end{gathered}$	\$167	$\begin{array}{r} -\$ 124 \\ (-43 \%) \end{array}$	100\%

* Compared to Status Quo Policy
"Allocative Equity" is defined as the percentage of rebate dollars allocated to households with incomes under \$75,000.

Table 11: Optimal Policy for the Status Quo Budget

		BEV Rebate	PHEV Rebate		Additional PEVs Sold		Cost tiveness	Total Cost
	Under \$25k	\$ 12,500	\$	7,775	12,995	22,394		\$291,019,864
	\$25-\$50k	\$ 7,400	\$	2,500				
	\$50-\$75k	\$	\$	-				
	\$75-\$100k	\$ 2,500	\$	-				
	\$100-\$175k	\$	\$	-				
	Over \$175k	\$	\$	-				

A Appendix

Figure A.1: PEVs on the Market as of Fall 2013

Make	Body	Model	Type	MSRP	Range	Refuel (mpge)	Refuel \$/gal
Smart	convertible		BEV	\$28,000	68	107	0.77
Smart	hatchback		BEV	\$25,000	68	107	0.77
Chevrolet	compact sedan	Volt	PHEV	\$34,185	38	98	0.84
Ford	compact sedan	Focus Electric	BEV	\$35,170	76	99	0.83
Toyota	compact SUV	RAV4 EV	BEV	\$49,800	103	74	1.11
Chevrolet	hatchback	Spark	BEV	\$26,685	82	109	0.76
Chevrolet	hatchback	Spark	BEV	\$27,010	82	109	0.76
Fiat	hatchback	500 Elettrica	BEV	\$31,800	90	108	0.76
Honda	hatchback	Fit EV	BEV	\$36,625	82	105	0.78
Nissan	hatchback	Leaf	BEV	\$29,650	73	102	0.81
Nissan	hatchback	Leaf	BEV	\$32,670	73	102	0.81
Nissan	hatchback	Leaf	BEV	\$35,690	73	102	0.81
Toyota	hatchback	Prius Plug In	PHEV	\$30,800	11	95	0.87
Toyota	hatchback	Prius Plug In	PHEV	\$35,715	11	95	0.87
Chevrolet	coupe	Cadillac ELR	PHEV	\$75,000	37	98	0.84
Porsche	full-size sedan	Panamera S E-Hybrid	PHEV	\$99,000	20	98	0.84
Tesla	midsize sedan	Model S	BEV	\$71,070	265	94	0.88
Tesla	midsize sedan	Model S	BEV	\$81,070	265	94	0.88
Tesla	midsize sedan	Model S	BEV	\$94,570	265	94	0.88
Ford	midsize sedan	Fusion Energi	PHEV	\$35,525	21	92	0.90
Ford	midsize sedan	Fusion Energi	PHEV	\$37,325	21	92	0.90
Honda	midsize sedan	Accord Plug In	PHEV	\$39,780	10	105	0.78
Ford	wagon	C-Max Energi	PHEV	\$32,920	21	100	0.82

[^0]: ${ }^{1}$ Corresponding author can be reached at (310) 593-1198.
 ${ }^{2}$ Funding for the UCLA New Car Buyers Survey was provided by the UCLA Luskin Center. Additional research funding for this analysis was provided by California Air Resources Board.
 ${ }^{3}$ The authors thank Severin Borenstein, William Chernicoff, Mary Evans, J ames Hamilton, MarkJ acobsen, Matthew Kahn, J ames Sallee, David Victor, and J unjie Zhang for their helpful comments. The authors also thank C.C. Song and Samuel Krumholz for their research assistance.

[^1]: ${ }^{1}$ In market settings where the price elasticity of demand is lower than the priceelasticity of supply, dealers will receive a disproportionate share of incentives, making such an appropriation through price adjustments possible. When the price elasticity of demand is higher than the price elasticity of supply, such a price adjustment becomes less possible in a competitive market.

[^2]: ${ }^{2}$ For simplicity, we assume there is only one available PEV. The intuition from the theoretical model holds when there are multiple PEV models available.
 ${ }^{3}$ Note the objective function to maximize PEV purchases given the social planner's budget is not a standard welfare maximization problem. Many states have already decided to promote the adoption of PEVs. Given this decision, the objective function is representative of a policy maker's goal to increase PEV adoption cost-effectively.
 ${ }^{4}$ We assume the consumer fully captures the rebate and ignore potential supply-side responses such as

[^3]: ${ }^{7}$ For a more detailed discussion see J affe, Newell, and Stavins, 2002, 2005; Fischer and Newell, 2008; Bollinger and Gillingham, 2012.

[^4]: ${ }^{8}$ If we had a representative sample of the general population, as opposed to a representative sample of new car buyers, then we could estimate the initial decision to purchase a new vehicle versus a used vehicle or no vehicle. The advantage of focusing on new car buyers is that we obtain a much richer data set on decisions to purchase PEVs. This truncated model assumes that all households planning to purchase a new vehicle follow through with their decision, and that no households not planning to purchase a new vehicle change their minds. There are a few potential violations of this assumption. There may be households who intend to purchase a new vehicle but do not because their current vehicle lasts longer than expected or due to adverse financial shocks. There may be households who were screened out of our sample due to their stated intention not to purchase a new vehicle who nevertheless purchase a new vehicle. Lastly, our sample excludes households who are not planning to purchase a new vehicle, but who may be induced by the PEV rebate policy to purchase a new vehicle.

[^5]: ${ }^{10} \mathrm{~A}$ survey sample large enough to obtain the same level of detail on both the initial decision to purchase a new vehicle as well as on PEV tradeoffs would have been far outside the budget constraint for this project.
 ${ }^{11}$ The survey focuses on decisions respondentsmakeregardingtheirnext newvehicle purchase, regardless if the next new vehicle is a primary or non-primary household vehicle. Although there is evidence that households with more vehicles are more likely to diversify household vehicle fleets with PEVs (Kurani, Turrentine, and Sperling, 1996), by focusing on purchases that are likely to happen in the next few years, we are better able to estimate PEV sales over a medium-term policy period. Furthermore, our simulations account for heterogeneity in preferences across income groups, which likely reflects not only differential marginal utilities of income but also differential ex ante preferences that may be driven in part by household vehiclefleet.

[^6]: ${ }^{12}$ The purpose of selecting a top conventional vehicle is twofold. First, it allows the respondent to selfidentify with the subspace of the large new vehicle market that she is most likely to purchase from in the future. This is important because PEV availability is currently constrained to a subset of brands and body types (mostly small sedans and hatchbacks). Second, we pivot off the top vehicle in the subsequent choice experiment, meaning that respondents choose between conventional, BEV, and PHEV versions of their top vehicles, and price of the alternatives is a function of the price of the respondent's top vehicle. This results in respondentsfacingmorerealistic choices.
 ${ }^{13}$ Dependingon a respondent's top vehiclechoice, theBEVs andPHEVspresented in the choiceexperiment may or may not be actual vehicles available on the market. The choice experiments assume maximal penetration by offering PEV versions of all vehicle models. The survey was administered during a time where new PEV models were rapidly becoming available on the market.

[^7]: ${ }^{14}$ The weighted California Household Travel Survey, relative to our weighted sample, exhibits modestly fewer upper middle households ($\$ 75-100 \mathrm{k} ; 15 \%$ compared to 23%) and greater upper income households ($>\$ 150 \mathrm{~K} ; 21 \%$ compared to 12%). With respect to age, it exhibits a lower number of $18-24$ year olds (2% compared to 16%), modestly greater $55-64$ years olds (28% compared to 14%) and greater $65+$ year olds (19% compared to 10%). With respect to education, it contains fewer households with less than a high school diploma (3% compared to 7%), fewer with a high school degree (11% compared to 25%) and greater with graduated degrees (26% compared to 13%). Finally, with respect to home ownership, it has modestly greater households that own their homes (77% compared to 62%).

[^8]: ${ }^{15}$ Strategic behavior on behalf of respondents would most likely take the form of not choosingPEVs unless there was a large rebate, which would lead to an under-estimate of PEV market share.
 ${ }^{16}$ Generally speakingthepriceelasticitydeclines as household income increases, suggestingthat wealthier households become relatively less price responsive. However, as income categories rise from $\$ 100 \mathrm{k}-175 \mathrm{k}$ to over $\$ 175 \mathrm{k}$ (our top income bracket), we estimate that households price elasticities rise from -. 039 to -. 089 . We cannot fully explain this jump, except to speculate that it is correlated with a discontinuity of household preferences for luxury PEV.

[^9]: ${ }^{17}$ The PEVs on the market as of fall 2013 and their characteristics are shown in Figure A. 1 in the Appendix.
 ${ }^{18}$ We assume that the number of annual new vehicle purchases is constant at 2013 levels for a three year policy period and estimate the number of these purchases that are PEVs. This is reflective of our theoretical and empirical models being contingent upon the decision to purchase a newvehicle.

[^10]: ${ }^{19}$ Although respondents were instructed to assume that residential charging would be provided with the purchase of a PEV, some respondents might have updated this to reflect increased installation costs for multi-family housing relative to single-family housing. For our sample, wefind no differencein PEV purchase probabilities between households that live in single, detached houses and those who do not.

[^11]: ${ }^{20}$ The relative population shares of the income groups are 13% (Under $\$ 25 \mathrm{k}$), 21% ($\$ 25-\$ 50 \mathrm{k}$), 18% (\$50-\$75k), 15\%(\$75-\$100k), 24\%(\$100-\$175k), and 9\%(Over\$175k).

[^12]: ${ }^{\mathbf{1}}$ The respondent sees price in dollars. For example, a respondent who selected a conventional model that costs $\$ 30,000$ would see BEV and PHEV versions of that model that cost $\$ 31,500, \$ 34,500, \$ 37,500$, or $\$ 45,000$.
 ${ }^{\mathbf{2}}$ At the time the survey was administered, average gasoline cost in California was approximately $\$ 4$ per gallon.
 ${ }^{3}$ The average gasoline fuel economy of PHEVs as of December 2013 was 41 mpg , which is roughly double the fuel economy of our gasoline vehicle universe of 20 mpg . Therefore we choose a baseline gasoline refueling cost for PHEVs that is half that of gasoline vehicles.
 ${ }^{4}$ At the time the survey was administered, the average overnight electricity rate in California was roughly 16 cents per kWh and the average vehicle economy of electric vehicles was 3.5 miles per kWh , suggesting an average cost per electric mile of $\$ 0.046$. The average cost per mile of gasoline vehicles in our vehicle universe is $\frac{\$ 4 / \mathrm{gal}}{20 \mathrm{mi} / \mathrm{gal}}=\$ 0.20$ per mile. Thus on average, refueling cost for electric miles is 23% of the $\$ 4$ per gallon refueling cost for gasoline miles, or $\$ 0.92 / \mathrm{gal}$. Therefore we choose a baseline electric refueling cost of $\$ 0.90$ per gallon equivalent.

[^13]: Compared to Caltrans (2013) California 2010-2012 Household Travel Survey

