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Abstract 
We assess the performance of alternative rebate designs for plug-in electric vehicles. Based 

on an innovative vehicle choice model, we simulate the performance of rebate designs that 
vary in terms of vehicle technologies, consumer income eligibility, and caps on the price of 
vehicles eligible for subsidies. We compare these alternatives in terms of 1) the number 
of additional plug-in electric vehicles purchased, 2) cost-effectiveness per additional vehicle 
purchase induced, 3) total program cost, and 4) the distribution of rebate funding across 
consumer income classes. Using the status quo rebate policy in California as a reference 
case, we identify two alternative types of designs that are superior along all four performance 
criteria. 
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1 Introduction 

Policymakers design public incentives with the aim of inducing consumers to adopt inno- 
vative technologies that reduce environmental damages. Such incentives may include price 
subsidies, rebates, tax credits, sales tax exemptions, and subsidized financing. These pol- 
icy incentives are currently deployed to induce consumers to adopt technologies such as 
alternative fuels and vehicles, energy and water efficient technologies, and renewable energy 
technologies, among others. While the critique of these incentives as “second best” from a 
social efficiency perspective is well known, researchers have paid much less attention to how 
to cost-effectively and equitably design these commonly encountered policy incentives. 

We use California’s plug-in electric vehicle (PEV) rebate program as a reference case in 
order to explore the opportunity for both more cost-effective and equitable policy deigns. 
In our policy setting, there are several possible sources of heterogeneity that the incentive 
policy’s design might leverage. First, the policy may set different rebate levels for different 
products, in our case for Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehi- 
cles (PHEVs). Second, a policy may employ price caps, which would make PEVs above the 
specified price ineligible for a rebate. Third, a policy could base rebate levels on heterogene- 
ity. Recently California adopted legislation (SB 1271) requiring rebate levels to vary with 
consumers’ income levels and subsequently announced it would limit rebates to households 
with incomes under $500,000 (or individuals with incomes under $250,000). 

We motivate our empirical analysis with a theoretical model of a social planner who 
must determine the rebate level to assign to consumers in order to maximize PEV purchases 
subject to a budget constraint. Our social planner faces heterogeneous consumers in their ex 
ante utilities for the new products and their marginal utilities of income. Our model predicts 
that the social planner’s optimal rebate to assign decreases as a consumer’s ex ante value 
of the product increases. Consumer segments with high ex ante values for the product are 
more likely to purchase the product under any policy, thus qualifying in greater numbers 
for the rebate than are consumer segments with lower ex ante product values. As a result, 
targeting consumers with lower ex ante values is more cost-effective, requiring less public 
rebate revenue for the same change in consumer probabilities of product switching. Second, 
our model predicts that the social planner’s optimal rebate increases as the consumer’s own 
marginal utility of income increases. Any given rebate level is more effective in maximizing 
the sum of probabilities of purchasing the product for the segment of consumers who are 
relatively more price responsive. 

Our fundamental contribution is an approach to simulating the cost-effectiveness of al- 
ternative policy designs.  The relevant policy setting is one in which policymakers must 
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set incentives levels across more than one product and for which consumers have product- 
differentiated demands. The basic elements of the analysis require that the researcher has 
estimates of 1) the price elasticities of demand for the relevant dimension of consumer het- 
erogeneity (i.e., income classes in our case), 2) the distributions of consumers’ willingness 
to pay for each product, and 3) prices for the products. The researcher can then explore 
through demand simulations how the assignments of financial incentives across products and 
consumer segments will affect the number of total additional products purchased, the total 
cost of policy (e.g., required public revenues), and the cost effectiveness per additional prod- 
uct purchased. We also illustrate the use of a simple metric for comparing allocative equity 
across policy designs. 

In order to evaluate the effects of a variety of rebate designs, we first develop and estimate 
an innovative empirical model of consumer vehicle choice. The centerpiece of our empirical 
analysis is a consumer vehicle choice model that enables us to model the consumer choices 
across all makes and models currently in the California market. A statewide representative 
survey of 1,261 prospective new car buyers in California enables us to identify individual 
preferences for conventional and alternative vehicle technology attributes, allowing us to es- 
timate price elasticities of demand and willingness to pay for different vehicles. We integrate 
this data on vehicle sales and market structure to predict the effect of alternative rebate 
policy designs on our policy performance metrics. 

We then use this model to simulate the performance of rebate designs. We find that the 
status quo policy is effective, increasing the market share of PEVs by at least 7%. The status 
quo policy offers $1,500 and $2,500 rebate for PHEVs and BEVs, respectively. We find that 
the incidence of free riding by consumers who would have purchased PEVs in the absence of 
a rebate means that policy cost per induced PEV purchase is around $30,000 for the status 
quo policy. 

Our initial simulation of alternative policy designs explores the effects of changing rebate 
levels across the two vehicle technologies (BEVs and PHEVs). These simulations reveal the 
impacts of consumers’ differing ex ante values (i.e., willingness to pay) for BEVs and PHEVs 
on the performance of rebate policies. For example, allocating higher rebates to BEVs, 
for which consumers have a relatively lower value, reduces the number of total additional 
PEVs sold but also improves policy cost-effectiveness and lowers total policy costs. While 
some policymakers give BEVs relatively higher rebates because they believe BEVs produce 
relatively higher social benefits, our recommendation that BEVs receive relatively higher 
rebates compared to PHEVs is based solely upon a cost-effectiveness criteria. 

Our second set of analyses explores the effects of vehicle price caps. A vehicle price cap 
policy excludes PEV adopters from a rebate who have relatively higher values for PEVs as 
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expressed by their willingness to pay more for the PEV. Because relatively higher-income 
consumers tend to have relatively higher willingness to pay for PEVs, a vehicle price cap may 
render many higher-income PEV adopters ineligible for the rebate. Evaluating a vehicle price 
cap of $60,000, we find that 10% fewer additional vehicles are sold, while cost-effectiveness 
improves and total program costs fall by 34%. However, we find that vehicle price caps do not 
appear to signifi tly improve the allocative equity as some policymakers have suggested 
they would. For the California market context, this appears to be true for two reasons. 
First, many higher-income consumers also purchase lower-priced PEVs. Second, a vehicle 
price cap does not infl how rebates to vehicles below the price cap are allocated across 
consumers of different incomes. 

Our third set of analyses evaluates redesigning the existing rebate program to give con- 
sumers in lower-income classes relatively higher rebates. Rebate policy designs that are 
progressive with respect to income reduce the number of consumers who receive rebates, but 
who would have purchased the PEVs anyway. These policies also target lower-income con- 
sumers who have a higher marginal value for the rebate and who are less likely to purchase 
a PEV except in the presence of higher rebate levels. We find that these policies increase 
the number of additional PEVs sold per rebate dollar spent (i.e., the cost-effectiveness of the 
policy) relative to the status quo policy. 

Overall, we find two types of policy designs are superior to California’s status quo pol- 
icy along performance dimensions. The first type of policy offers very progressive rebate 
levels based on consumer income levels. An example of this policy would offer consumers 
purchasing BEVs who make incomes of 1) less than $25,000, a rebate of $7,500, 2) $25,000- 
$50,000, a rebate of $5,000, 3) $50,000-$75,000, a rebate of $2,000, and 4) over $75,000, 
no rebate. Consumers purchasing a PHEV in these same income categories would receive 
$4,500, $3,000, and $1,000, respectively. The second type of policy combines a less progres- 
sive rebate schedule with a vehicle price cap. An example of this policy would implement a 
$60,000 vehicle price cap above which no rebate is offered while offering consumers making 
less than $100,000 a rebate of $5,000 for BEVs and $3,000 for PHEVs. These policies sell at 
least as many PEVs over the next three years as the status quo policy, are more cost effective 
(e.g., PEV sold per dollar spent), have lower total policy costs, and result in a significantly 
greater allocative equity. 

 

2 Literature on Design of Technology Adoption Policies 

Our central thesis is that a fiscal policy could be improved by recognizing and leveraging 
heterogeneity among consumers. This idea first emerged in the modern economics literature 
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with the discussion of design of tax policies (Diamond, 1970). However, this insight has not 
been widely developed and applied to the emerging literature on the design of incentives 
for innovative technology adoption policies. Instead, researchers concerned with technology 
adoption policies have to sought understand the types of externalities that may arise and 
how to best internalize these through our choice of policy instrument. 

Researchers have evaluated whether PEV adoption will lead to emissions decreases or 
increases (Babaee, Nagpure, and DeCarolis, 2014). More sophisticated analyses have linked 
increased electricity demand by PEVs with spatially explicit changes in emissions and air pol- 
lution exposures (Graff Zivin, Kotchen, and Mansur, 2014; Holland et al., 2015). Researchers 
have also evaluated the effectiveness, measured in terms of health outcomes, of alternative 
transportation policies and technologies associated with hybrids and PEVs (Michalek et al., 
2011; CBO, 2012; Tessum, Hill, and Marshall, 2014). Researchers have argued that there 
may exist a distinct set of externalities around innovation, adoption, and diff of new 
technologies that goes beyond the standard health, safety, and environmental externalities 
that have motivated public regulations traditionally. The majority of these externalities take 
the form of sub-optimal knowledge spillovers among either consumers (i.e., learning by using) 
or producers (i.e., learning by doing) (e.g., Jaff Newell, and Stavins, 2002, 2005; Fischer 
and Newell, 2008; Bollinger and Gillingham, 2012). In the context of emerging innovative 
product markets, early adopters may face large private (learning) costs while producing large 
social (learning) benefits for later adopters leading to knowledge spillovers and adoption rates 
that are socially sub-optimal. Policies for innovative technologies with these externalities, 
these authors would argue, ought be designed to achieve the socially optimal schedule of 
knowledge spillovers in addition to internalizing environmental or health externalities (Jaffe, 
Newell, and Stavins, 2005). 

A large literature exists that evaluates optimal choice of policy instruments for these ex- 
ternalities (Gillingham, Newell, and Palmer, 2006). Tax and cap and trade policies establish 
both positive incentives for the adoption and use of relatively cleaner technologies as well 
as negative incentives for the adoption and use of relatively more polluting technologies. In 
contrast, policies such as rebates, tax credits, sales tax exemptions, and similar subsidies 
only establish positive incentives for the adoption and use of relatively cleaner technologies 
and thus are called “second best” policies. In the context of transportation policies, feebate 
policies have sought to replicate the effects of a tax policy by increasing the price of relatively 
more polluting vehicles while reducing the price of less polluting vehicles. Policy analyses of 
feebate policies often share our analytical approach of using estimates of consumers’ price 
elasticity of demand to evaluate changes in market share of the targeted vehicles. 

Advocates of incentive policies often point to studies of demand for cleaner alternative 
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vehicles which show that consumers have lower demand for, and less knowledge of, these 
vehicles than other internal combustion engine vehicles (Bunch et al., 1993; Brownstone, 
Bunch, and Train, 2000; Axsen and Kurani, 2009; Hidrue et al., 2011). Historically, three 
types of vehicle incentive policies have been evaluated by researchers: the aforementioned 
feebate policies, as well as hybrid-electric vehicle (e.g., Diamond, 2009; Chandra, Gulati, 
and Kandlikar, 2010; Beresteanu and Li, 2011; Jenn et al., 2013; Sierzchula et al., 2014), and 
“cash-for-clunkers” policies (e.g., Huang, 2010; Gayer and Parker, 2013; Li, Linn, and Spiller, 
2013; Mian and Sufi, forthcoming). We compare our estimated effects of the California 
Vehicle Rebate Program on changes in market share with these studies in Section 4. 

An issue related to policy instrument choice that has recently received attention is that 
consumers appear to respond differently to financial incentives of different types, but which 
convey the same net value to consumers (Chetty, Looney, and Kroft, 2009). Researchers 
have shown that consumers respond more to rebates and sales tax exemptions that occur 
nearer to the point of sale than to income tax incentives, which must be applied for and 
received at some later point in time. Gallagher, Sims, and Muehlegger (2011) provide an 
example for cleaner vehicle technologies when they report that Hybrid Electric Vehicle sales 
increase more in response to sale tax exemptions that to income tax credits/exceptions. 

How much of a vehicle incentive is actually transferred to consumers depends upon its 
economic incidence. Incidence analysis anticipates that manufacturers or dealers will have 
an incentive to strategically adjust a vehicle’s price in response to the presence of vehicle 
incentives. Whether market conditions permit this type of value appropriation will depend 
upon the relative elasticities of supply and demand curves for the vehicles.1 The available 
empirical evidence on the incidence for advanced clean vehicles comes from analyses of hybrid 
vehicle tax incentives. Examining the Toyota Prius, Sallee (2011) finds that drivers capture 
nearly all of the available tax incentives. Busse, Silva-Risso, and Zettelmeyer (2006), who ex- 
amine the incidence of dealer versus manufacturer controlled incentives, find a range between 
.31 and .81 cents on each dollar goes to the buyer depending upon the type of incentive. In 
the context of our analyses, as long as the rebate incidence is equal across all vehicles, our 
findings remain valid although the overall effectiveness of the rebate (on consumer purchases) 
would go down if dealerships capture some of rebates’ value. 

 
 
 
 

 
 

1In market settings where the price elasticity of demand is lower than the price elasticity of supply, dealers 
will receive a disproportionate share of incentives, making such an appropriation through price adjustments 
possible. When the price elasticity of demand is higher than the price elasticity of supply, such a price 
adjustment becomes less possible in a competitive market. 
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  exp(v − β (p − r ))   

3 Theoretical  Model 

Suppose there is one PEV available on the new car market and J non-PEVs available 
for consumers to choose from. To incentivize PEV adoption, a social planner offers rebates 
to I consumers who purchase PEVs. A utility-maximizing individual will purchase a vehicle 
when her utility from doing so exceeds her utility from purchasing any other available vehicle 
as well as the her utility from the outside option not to purchase a vehicle. We focus on the 
decision to purchase a new PEV, contingent upon having chosen to purchase a new vehicle. 

Contingent upon having decided to purchase a new vehicle, an individual purchases a PEV 
when her total utility from the decision, ui,P EV , is greater than her utility for purchasing 
any other vehicle, ui,j .2  Let total utility for the PEV be her ex ante value for the PEV, vi, 

minus the cost of the PEV, p, times her marginal utility of income, βi. 
The social planner reduces PEV price for consumers by assigning rebates, ri, out of a 

policy budget, R, such that 

 
ui,P EV  = vi − βi(p − ri). (1) 

The policy maker’s objective is to maximize the sum of individual new car buyer proba- 

bilities of purchasing PEVs, πi = prob(ui,P EV > ui,j ) ∀ j /= PEV , by allocating the 
rebates cost effectively subject to the government’s budget constraint:3 

max 
\ 

prob(ui,P EV > ui,j ) ∀ j /= PEV (2) 
{ri} 

i
 

S.T. 
\ 

E[πiri] ≤ R. (3) 
i 

 

Assuming utilities are linear and the sources of actionable difference between consumers are 
observable, we can model probability as a conditional logit model: 

max 
\ exp(ui,P EV ) ≡ max 

\ i i i ∀ j /= PEV. (4) 
{ri} 

}, 
exp(ui,k ) 

i k 
{ri} 

i exp(vi − βi(p − ri)) + 
}, 

exp(ui,j ) 
j 

 

The choice variable is the rebate level, ri, which only affects utility of the PEV and not the 
utility of other vehicles.4  The social planner cannot affect the utility of the other vehicles 

 
 

2For simplicity, we assume there is only one available PEV. The intuition from the theoretical model 
holds when there are multiple PEV models available. 

3Note the objective function to maximize PEV purchases given the social planner’s budget is not a 
standard welfare maximization problem. Many states have already decided to promote the adoption of 
PEVs. Given this decision, the objective function is representative of a policy maker’s goal to increase PEV 
adoption  cost-effectively. 

4We assume the consumer fully captures the rebate and ignore potential supply-side responses such as 
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2 

x+
 

2 

(ui,j for j /= PEV ). Therefore, in this framework, maximizing the sum of the 
probabilities of choosing the PEV is equivalent to maximizing the sum of the utilities for 
the PEV:5 

max 
\ 

[vi − βi(p − ri)] (5) 
{ri} 

i
 

 

S.T. 
\ 

E[πiri] ≤ R. 
i 

Solving the constrained maximization problem above results in the following first order 
condition, where λ is the shadow value of the budget constraint: 

 

λ = βi
 

π(ri) + βiπ(ri)ri − βiπ(ri)2ri 
. (6) 

 

If there are N new car buyers, then there are N first order conditions similar to Equa- 
tion 6, one for each car buyer. We can solve these first order conditions for λ and set them 
equal to each other. The stylized case where N=2 is instructive because it can help illustrate 
the infl of varying the characteristics of two different consumers. In this case, we find 
the following: 

 

λ = β1
 

π(r1) + β1π(r1)r1  − β1π(r1)2r1 
= β2 

π(r2) + β2π(r2)r2  − β2π(r2)2r2 
. (7) 

As shown in the online appendix, under the assumption that πi < 1 , we find the following 
comparative statics:6 

 
Optimal rebate decreases as own ex ante value increases: 

 

∂r1 
 

∂v1 
< 0. (8) 

 
Optimal rebate increases as other’s ex ante value increases (via the interaction of the 

 
 
 

 

manufacturer and dealer pricing decisions. 
5Note that the denominator from Equation 4 does not fall out, but rather, since 

}, 
exp(ui,j ) remains 

j 
constant, maximizing Equation 4 is equivalent to maximizing the numerator of Equation 4. In other words, 
maximizing x is equivalent to maximizing x where x is a choice variable and C is a positive constant. 

6Given the market share of PEVs, the probability of the average consumer purchasing a PEV is likely 
to be considerably less than 50%, so the assumption that πi < 1 seems reasonable.The intuition of this 
condition is that once a consumer’s probability of purchasing the PEV is high enough, her optimal rebate 
goes to zero and remains at zero if her ex ante value vi or marginal utility of income βi change marginally. 
This implies that if a consumer is going to purchase a PEV regardless, then it is a “waste” of public resources 
to give this person a rebate regardless if she is rich or poor. 
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shadow price for consumers 1 and 2 in Equation 7): 
 

∂r1 
 

∂v2 
> 0. (9) 

 
Optimal rebate increases as own marginal utility of income increases (i.e., more price 
sensitive): 

∂r1 
 

∂β1 
> 0. (10) 

 

Optimal rebate decreases as other’s marginal utility of income increases (via the inter- 
action of the shadow price for consumers 1 and 2 in Equation 7): 

 

∂r1 
 

∂β2 
< 0. (11) 

 
These comparative statics show that higher rebates should be assigned to consumers with 

higher marginal utility of income and/or lower ex ante value for PEVs. The intuition for 
this result is shown in Figure 1. Probability of purchasing the PEV is proportional to utility 
for the PEV. As shown in Figure 1a, we can plot utility of the PEV versus rebate level as 

a linear function where the y-intercept is utility without the rebate, vi − βip, and the slope 
of the function is the marginal utility of income, βi. Although probability of purchasing 
the PEV increases with ri, there is positive probability that the consumer will purchase the 
PEV in the absence of the rebate. If the consumer purchases the PEV in the absence of 
the rebate, the purchase is non-marginal in the sense that the purchase was not induced by 
the rebate policy. Area A is a proxy for the non-marginal purchase probability. Area B is 
a proxy for the marginal purchase probability; that is, by how much the rebate increases 
the probability of the consumer purchasing a PEV. The higher the consumer’s ex ante value 
for the PEV, the higher her non-marginal purchase probability. The higher the consumer’s 
marginal utility of income, the more responsive she will be to the rebate, and the higher 
her marginal purchase probability. The comparative statics show us that rebates are more 
cost effective when they target consumers with a higher ratio of marginal to non-marginal 
purchase probability, i.e., lower ex ante values and higher marginal utilities of income. 

Figure 1b shows that if two consumers have the same probability of purchasing the PEV 
in the absence of the rebate, the policy maker should target the rebate towards consumer 
1, who has the higher marginal utility of income and thus has a higher ratio of marginal to 
non-marginal purchase probability. Figure 1c shows that if two consumers have the same 
marginal utility of income, the policy maker should target the rebate towards consumer 2, 
who has the lower ex ante value and thus has a higher ratio of marginal to non-marginal 
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purchase probability. In Figure 1d consumer 1 has a higher ex ante value for the PEV and 
a higher marginal utility of income, whereas consumer 2 has a lower ex ante value and a 
lower marginal utility of income. In this case the policy maker would want to assign rebates 
r1 and r2 such that the ratio of consumer 1’s marginal purchase probability to non-marginal 
purchase probability equals that of consumer 2, as proscribed by Equation 7. 

We can also think about Figure 1 as a demand curve, since PEV utility on the y-axis is 
proportional to quantity demanded and rebate on the x-axis is a measure of price. Therefore, 
our theoretical results suggest that rebates should be targeted towards consumer segments 
with lower market share and steeper demand curves. Targeting consumer segments and/or 
products with lower market share is cost effective because it results in fewer rebates being 
allocated to infra-marginal purchases. Targeting consumer segments and/or products with 
steeper demand curves is more cost effective because the rebates stimulate more marginal 
purchases. 

 
3.1 Cost-effectiveness analysis of rebate designs across two tech- 

nologies 

In our empirical analysis, we limit ourselves to a cost-effectiveness analysis of alternative 
rebate designs rather than evaluating the socially optimal rebate design. We do not know 
the marginal social benefits (e.g., avoided externalities) associated with PEV purchases that 
would be needed to define a social optimum. However, the social planner’s problem above 
makes several predictions (e.g., Equations 8-11) about how to improve the cost-effectiveness 
of rebate policy designs with information readily available to the economists’ standard de- 
mand analyses. 

We adapt and apply this model prediction to an empirical and simulation setting in order 
to increase the number of PEVs sold per public dollar spent (i.e., cost-effectiveness). We 
consider the policy problem of setting rebate levels for two types of PEVs, BEVs and PHEVs, 
for which consumers have very different ex ante values. We find that the consumers’ ex ante 
values are lower for BEVs than PHEVs. From Equation 8, we predict that if rebate levels 
are relatively higher for BEVs as compared to PHEVs then the policy will be relatively more 
cost-effective. We also consider the policy problem of setting rebate levels when the marginal 
utility of income varies across consumer (e.g., income) classes. We find that lower-income 
classes have a higher marginal utility of income than do higher-income classes. Equation 10 
suggests that relatively higher rebate levels for relatively lower income classes will produce 
more cost-effective policy outcomes. 
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3.2 Welfare Maximization 

Assessing the design of a vehicle purchase rebate from the perspective of maximization 
welfare highlights several challenges that cost effectiveness analysis circumvent. First, vehicle 
purchase incentives are “second best” instruments compared to “first best” cap and trade or 
tax instruments. This is because although these incentives alter consumers’ vehicle purchase 
decisions they cannot infl consumers’ decisions about how much to drive a vehicle. As 
a result this incentive cannot precisely target externalities that arise in proportion to the 
vehicle miles traveled such as local air pollution and state-wide greenhouse gas emissions. A 
second complication for vehicle incentives is that the social planner may be trying to target 
different externalities at once. In California these include suboptimal knowledge spillovers 
across both drivers and automakers, locally-varying air pollutant damages, and state-wide 
greenhouse gas damages. This multiplicity of externalities also makes setting the welfare- 
maximizing level of a vehicle incentive very challenging. 

 
3.3 Model Extensions 

One extension of this model would consider the inter-temporal dynamics of consumer- 
to-consumer information spillovers. In the context of emerging innovative product markets, 
early adopters may face large private (learning) costs while producing large social (learn- 
ing) benefits for later adopters, leading to knowledge spillovers and adoption rates that are 
socially sub-optimal (Stoneman and Diederen, 1994).7 Model extensions that target incen- 
tives to consumers in social networks with larger spillovers could further improve the cost 
effectiveness of rebate assignment. 

Importantly, our theoretical recommendation to increase the relative rebate levels for 
relatively lower demand and lower market share goods assumes that product quality is com- 
parable across the goods. We do not consider product quality differentiation within the 
model, which might be one cause for relatively lower demand and market share (Heutel and 
Muehlegger, 2015). In the dynamic setting described in the previous paragraph, product 
quality would be an important consideration, as subsidization of low quality products may 
lead to negative network spillovers (e.g., bad reviews). 

A second extension would recognize potential supply-side responses that rebate incentives 
might induce. Specifically, incentive levels may change manufacturers’ decisions regarding 
pricing, production volumes, manufacturer and dealer incentives, marketing campaigns and 
even new product offerings. While modeling the supply side is beyond the scope of this 

 
 

7For a more detailed discussion see Jaffe, Newell, and Stavins, 2002, 2005; Fischer and Newell, 2008; 
Bollinger and Gillingham, 2012. 
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k 

paper, some of these supply-side infl ences do depend upon a more accurate understanding 
of rebate-induced consumer behavior which we aim to provide here. 

 

4 Empirical Model and Simulations 
 
4.1 Empirical Model 

The probability of a new car buyer selecting vehicle k (i.e., the market share of vehicle 
k) can be described as the new car buyer population-weighted average of the probabilities 
of new car buyers selecting vehicle k: 

 
N }, 

wi probi(Vk ) 
prob(V ) = i=0

 N 

}, 
wi

 
i=0 

 
 
, (12) 

 

where 
 

prob(Vk ): Average probability of purchasing vehicle k 

probi(Vk ): Probability of individual i purchasing vehicle k 

wi: Weight on individual i needed to make the sample representative of the new car 
buying population. 

The probability of individual i selecting vehicle k is the product of the probability of 
individual i purchasing a vehicle, the probability of individual i selecting a new vehicle 
over a used vehicle contingent upon having chosen to purchase a vehicle, the probability 
of individual i selecting the make of vehicle k out of all available makes, the probability of 
individual i selecting the body type of vehicle k out of all available body types, and the 
probability of individual i choosing vehicle k over all other vehicles of the same make and 
body type: 

 
 
probi(Vk ) = probi(V ehicle) probi(NewV ehicle|V ehicle) probi(Mk ) probi(Bk ) probi(Vk |Mk, Bk ), 

(13) 
where 

 
Mk : Make of vehicle k 

 
Bk : Body type of vehicle k. 
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Our survey focuses on individuals who have already decided to purchase a new vehicle. 
We model the decision to purchase a PEV contingent upon having decided to purchase a 
new vehicle:8 

 
probi(Vk |NewV ehicle) = probi(Mk ) probi(Bk ) probi(Vk |Mk, Bk ). (14) 

Assuming linear utility with standard Type 1 extreme value errors, we can model each 
probability component as a conditional logit: 

 
 

probi(Bk ) = 
 
 

probi(Mk ) = 

exp(v1i(Bk )) 
 N }, 

exp(v1i(Bj )) 
j=0 

exp(v2i(Mk )) 
 N }, 

exp(v2i(Mj )) 
j=0 
  exp(v3i(Vk |Mk, Bk ))   

 
(15) 

 
 

(16) 

probi(Vk |Mk, Bk ) = N }, 
exp(v3i(Vj |Mj, Bj )) 

j=0 

, (17) 

 

where 
 

v1i, v2i, and v3i: Linear utility functions of individual i. 
 

In order to make it tractable, the empirical model is somewhat restrictive. Our main 
assumptions include 1) limited vehicle substitution patterns,9 2) full capture of the rebate 
by consumers (Sallee, 2011), and 3) that the introduction of the rebates does not induce 
more new vehicle purchases but rather shifts some conventional new vehicle purchases to 
PEV purchases. 

 
 
 

 

8If we had a representative sample of the general population, as opposed to a representative sample of 
new car buyers, then we could estimate the initial decision to purchase a new vehicle versus a used vehicle 
or no vehicle. The advantage of focusing on new car buyers is that we obtain a much richer data set on 
decisions to purchase PEVs. This truncated model assumes that all households planning to purchase a new 
vehicle follow through with their decision, and that no households not planning to purchase a new vehicle 
change their minds. There are a few potential violations of this assumption. There may be households who 
intend to purchase a new vehicle but do not because their current vehicle lasts longer than expected or due 
to adverse financial shocks. There may be households who were screened out of our sample due to their 
stated intention not to purchase a new vehicle who nevertheless purchase a new vehicle. Lastly, our sample 
excludes households who are not planning to purchase a new vehicle, but who may be induced by the PEV 
rebate policy to purchase a new vehicle. 

9This assumption is discussed in Section 4.5. 
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4.2 Data 

We administered an online survey to a representative sample of Californian new car 
buyers10 and obtained a sample of 1,261 completed surveys. Of the respondents who com- 
pleted an initial screener, approximately 42% both qualified as potential new car buyers and 
completed the survey. 

There are several advantages to using stated preference data in this study. PEV sales 
account for a very small share of the new vehicle market, and until recently, only a few models 
were widely available. Available revealed preference data, such as vehicle registrations, do not 
include consumer characteristics. With stated preference data we are able to relate consumer 
preferences to observable heterogeneity, which is necessary to target rebates toward different 
consumer  segments. 

Since we vary prices randomly according to an experimental design, we avoid common 
endogeneity problems associated with estimating demand as a function of prices. Using 
stated preference data also allows us to assume a richer set of PEVs by estimating preferences 
for PEVs that did not exist at the time the survey was administered but have become 
commercially available since then or are likely to in the near future. 

The survey first gathered household, vehicle, and demographic data. Next, the survey 
elicited body and brand preferences. Respondents were asked to choose the top two vehicle 
body types (out of twelve options) they were most likely to select for their next new vehicle 
purchase.11 Then respondents were asked to select the top three brands (out of the twenty 
most popular brands by sales volume in California in 2012) they were most likely to select 
for their next new vehicle purchase. 

Next, respondents were shown four sets of five vehicles, as shown in Figure 2, and in each 
set were asked to choose which of the five vehicles they were most likely to select for their next 
new vehicle purchase. The total set of twenty vehicles respondents chose from included all 
conventional vehicles (including internal combustion engine vehicles, hybrid electric vehicles, 
and diesel-fueled vehicles) on the new vehicle market as of the fall of 2013 that are of both 
the top brand and top body selected by respondents. The remainder of the twenty included 

 
 

 

10A survey sample large enough to obtain the same level of detail on both the initial decision to purchase 
a new vehicle as well as on PEV tradeoffs would have been far outside the budget constraint for this project. 

11The survey focuses on decisions respondents make regarding their next new vehicle purchase, regardless 
if the next new vehicle is a primary or non-primary household vehicle. Although there is evidence that 
households with more vehicles are more likely to diversify household vehicle fleets with PEVs (Kurani, 
Turrentine, and Sperling, 1996), by focusing on purchases that are likely to happen in the next few years, 
we are better able to estimate PEV sales over a medium-term policy period. Furthermore, our simulations 
account for heterogeneity in preferences across income groups, which likely reflects not only differential 
marginal utilities of income but also differential ex ante preferences that may be driven in part by household 
vehicle fleet. 
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a random draw of vehicles that are of the top body choice and second or third brand choice, 
or of the second body choice and top brand choice. In cases where the set of vehicles that 
meets these criteria is less than twenty, the remainder of the vehicles were a random selection 
of vehicles that are of either of the top body selections or of the top brand selections. Finally, 
respondents were asked to choose which one of the four vehicles chosen as top picks out of 
the twenty vehicles in the previous four questions they would be most likely to select for their 
next new vehicle purchase, as shown in Figure 3. This ‘top’ vehicle and its characteristics 
are carried through to subsequent questions in the survey.12 

Respondents were provided with information on BEV and PHEV technologies and intro- 
duced to PEV attributes, including refuel price, electric range, and HOV lane access. Finally, 
respondents were asked to choose between the conventional version, two BEV versions, and 
two PHEV versions of the vehicle they previously indicated as their top choice.13 In each 
choice set the first column displayed the conventional vehicle, and we randomized whether 
the two BEVs or PHEVs appeared in the subsequent columns. Attribute levels vary for 
each vehicle version as shown in Table 1, with price pivoting off the price of the existing 
conventional vehicle. An example choice set is shown in Figure 4. By choosing between five 
versions of the top vehicle, respondents are encouraged to assume that everything else (e.g., 
trim and performance) except the listed attributes are identical. This allows us to focus on 
how respondents make tradeoffs between vehicle technology, price, refuel cost, electric range, 
and HOV lane access. 

To make the choice experiment more realistic for respondents, we employ a pivot design. 
Price levels are designed to be percentages of a reference value. The price of the top con- 
ventional vehicle chosen by a respondent becomes her reference price, and the different price 
levels she sees are the percentage levels as specified by the experimental design multiplied 
by the reference price. For example, a respondent who selects a conventional model that 
costs $30,000 would see BEV and PHEV versions of that model that cost $31,500, $34,500, 
$37,500, or $45,000. On the other hand, a respondent who is considering the luxury end of 
the market and selects a conventional model that costs $60,000 would see BEV and PHEV 

 
 

12The purpose of selecting a top conventional vehicle is twofold. First, it allows the respondent to self- 
identify with the subspace of the large new vehicle market that she is most likely to purchase from in the 
future. This is important because PEV availability is currently constrained to a subset of brands and body 
types (mostly small sedans and hatchbacks). Second, we pivot off the top vehicle in the subsequent choice 
experiment, meaning that respondents choose between conventional, BEV, and PHEV versions of their top 
vehicles, and price of the alternatives is a function of the price of the respondent’s top vehicle. This results 
in respondents facing more realistic choices. 

13Depending on a respondent’s top vehicle choice, the BEVs and PHEVs presented in the choice experiment 
may or may not be actual vehicles available on the market. The choice experiments assume maximal 
penetration by offering PEV versions of all vehicle models. The survey was administered during a time 
where new PEV models were rapidly becoming available on the market. 
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versions of that model that cost $63,000, $69,000, $75,000, or $90,000. 
The conventional vehicle prices are therefore taken as fixed and we vary the PEV prices 

around that. As a result, we do not observe how consumers respond if we increase or 
decrease all vehicle prices but rather identify PEV demand elasticities relative to the prices 
of base models. However, this anchoring on current prices makes for a more realistic choice 
experiment. 

More details of the experimental design are given in Sheldon, DeShazo, and Carson 
(2015). The experimental design excludes dominated choices, such that a vehicle with better 
attribute levels (greater range, lower refueling cost, etc.) is more expensive. However, 
attributes are not perfectly correlated with price. For a given price point, the other attribute 
levels vary randomly subject to non-domination of the alternative. 

 
4.3 Comparison of Data and Results to Revealed Preference 

In order to validate the new car buyer survey data, we cross-check the respondent charac- 
teristics with a sample of new car buyers from the Caltrans 2010-2012 California Household 
Travel Survey (Caltrans, 2013). These comparisons, shown in Table 2, reveal that for 12 di- 
agnostic variables our survey sample is very similar to the actual new car buying population. 
Income, education and age are included in Table 2, exhibiting modest differences for a few 
value categories.14 

Also shown in Table 2 is a comparison of our estimated vehicle class share with the 
Caltrans 2010-2012 California Household Travel Survey (Caltrans, 2013). Our estimated 
vehicle class shares are similar to actual market shares. The main discrepancies are pickup 
trucks, minivans, SUVs, and convertibles. As our survey was administered up to three years 
after the Caltrans survey, the lower estimates of truck and minivan shares may represent 
the increasing popularity of SUVs for families. The higher estimated convertible share likely 
represents initial desire over eventual practicality. 

We compare our estimated vehicle brand shares with the actual market shares from the 
California New Car Dealer Association’s California Auto Outlook from the fourth quarter of 
2013 (CNCDA, 2013) in Table 3. Overall, our estimated brand shares are similar to actual 

 
 

 

14The weighted California Household Travel Survey, relative to our weighted sample, exhibits modestly 
fewer upper middle households ($75-100k; 15% compared to 23%) and greater upper income households 
(>$150K; 21% compared to 12%). With respect to age, it exhibits a lower number of 18-24 year olds (2% 
compared to 16%), modestly greater 55-64 years olds (28% compared to 14%) and greater 65+ year olds 
(19% compared to 10%). With respect to education, it contains fewer households with less than a high 
school diploma (3% compared to 7%), fewer with a high school degree (11% compared to 25%) and greater 
with graduated degrees (26% compared to 13%). Finally, with respect to home ownership, it has modestly 
greater households that own their homes (77% compared to 62%). 
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market shares. We also find that higher income households are more likely to select luxury 
brands. 

Under the current rebate policy, our simulations estimate a PEV market share of 3.1%. 
The actual California PEV market share in the fourth quarter of 2013 was 2.5% (CNCDA, 
2013). At the time of the survey, new PEV models were rapidly coming to market. Some of 
the models available in December of 2013 may not have been available earlier in the fourth 
quarter. Additionally, consumers may not have had full information about all of the newly 
available PEVs. This likely accounts for the difference between our estimated market share 
and the actual market share. Our estimated PEV market share is close to the actual market 
share, which supports the predictive validity of our model.15 In the simulations, if we use 
the revealed preference brand and body shares from the Caltrans survey and the California 
New Car Dealer Association, we estimate a PEV market share of 3.0%. If we aggregate 
body types to two categories, lightweight trucks and cars, we estimate a PEV market share 
of 3.3%. 

Lastly, we relate our estimated price and income parameters to those found in the lit- 
erature. A critical finding of our simulations is that as consumers’ incomes rise their price 
elasticities decline, causing them to be less responsive to a given rebate. Similar patterns 
have been documented using revealed preference data in both the general vehicle market 
(Bunch and Mahmassani, 2009) as well as the hybrid market (Beresteanu and Li, 2011). 

Using estimated quantities demanded for each vehicle across each income class before 
and after the rebate, we estimate an average price elasticity demand for BEVs of -1.8 and 
for PHEVs of -2.3 . Excluding the top income class, which behaves somewhat differently, we 
estimate an average income elasticity of demand of 0.2 for BEVs and -0.1 for PHEVs, which 
reflects the relatively higher rates of BEV purchasers in the top income classes.16 Our models 
yield price and income elasticities for only BEVs and PHEVs, while most estimates in the 
literature are for conventional new vehicles. Nonetheless, these estimated price elasticities 
are in line with new vehicles price elasticity estimates of -1.63 from Hess (1977) and -1.7 to - 
3.4 from Bordley (1993) but larger than the -0.87 estimated by McCarthy (1996). Our model 
yields an estimated income elasticity of 0.2 to -0.1 for BEVs and PHEVs, respectively. By 
comparison, Hess (1977) estimated 0.26 for new vehicles while McCarthy (1996) estimated 
0.85. 

 
 

15Strategic behavior on behalf of respondents would most likely take the form of not choosing PEVs unless 
there was a large rebate, which would lead to an under-estimate of PEV market share. 

16Generally speaking the price elasticity declines as household income increases, suggesting that wealthier 
households become relatively less price responsive. However, as income categories rise from $100k-175k to 
over $175k (our top income bracket), we estimate that households price elasticities rise from -.039 to -.089. 
We cannot fully explain this jump, except to speculate that it is correlated with a discontinuity of household 
preferences for luxury PEV. 
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4.4 Simulations 

We predict PEV sales as follows: 
 

1. Estimate probi(Mk ) for each income class using a rank-ordered logit. Predicted prob- 
abilities from this estimation are shown in Table 3. 

2. Estimate probi(Bk ) using a conditional logit. Covariates include body-specific con- 
stants and interactions with number of children and number of cars in a household. 
The estimation results are shown in Table 4. Predicted probabilities of purchasing 
different body types are different for individuals with different numbers of children and 
household vehicles. Table 5 shows the average probabilities across the sample. 

3. Estimate probi(Vk |Mk, Bk ) using a conditional logit. Covariates include purchase price 
(MSRP), refueling cost, electric range, BEV and PHEV constants, and an indicator 
for single-occupant HOV lane access. The estimation results are shown in Table 6. 

 
4. Using the representative sample of new car buyers from the survey and the charac- 

teristics of existing conventional and PEVs on the market,17 predict PEV purchase 
probabilities for each individual in the sample according to Equation 14.18 Integrate 
PEV purchase probabilities over the weighted sample of new car buyers. 

5. Reduce PEV purchase prices by specified rebate amount and redo step 4 to predict 
probabilities of purchasing existing PEVs given the different levels of rebates. 

 
4.5 Substitution Possibilities in the Model 

Each individual has a probability of purchasing each vehicle. The probability of an 
individual purchasing a Volt is the probability of her choosing a Chevrolet times the prob- 
ability of her choosing a compact sedan times the probability of her choosing the Volt over 
alternative Chevrolet compact sedans. 

The probability of choosing each brand is estimated using a rank ordered logit and is 
only a function of household income since almost all of the brands offer a range of body 
types. The implicit substitution pattern across brands is proportionate according to the 
standard independence of irrelevant alternatives assumption. However, because all brands 
are assumed to be available, there is effectively no induced substitution across brands. 

 
 

17The PEVs on the market as of fall 2013 and their characteristics are shown in Figure A.1 in the 
Appendix. 

18We assume that the number of annual new vehicle purchases is constant at 2013 levels for a three year 
policy period and estimate the number of these purchases that are PEVs. This is reflective of our theoretical 
and empirical models being contingent upon the decision to purchase a new vehicle. 
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The probability of choosing each body type is estimated using a conditional logit as a 
function of respondents’ top body picks and household demographics and using the model to 
predict the probabilities for each individual. Individuals’ probabilities can change, but only 
as a function of household demographics (i.e., number of children and number of household 
vehicles). Therefore, in this model there is effectively no induced substitution across bodies 
as a function of vehicle price. 

However, even if an individual’s most preferred body type is a compact sedan, her prob- 
ability of purchasing a RAV4 BEV (an SUV) will still change as the rebate for the RAV4 
BEV increases, since the individual has a full set of probabilities and the rebate increases the 
individual’s probability of purchasing a RAV4 BEV over other Toyota SUVs. Effectively, the 
model assumes that a rebate on a PEV in a given class impacts an individual’s probability of 
purchasing that PEV versus other vehicles in that class, but does not impact the individual’s 
probability of purchasing a vehicle in the given class. 

The implied substitution patterns of the model suggest that increasing PEV sales of a 
certain model cannibalizes sales of the auto maker’s other models. For example, suppose 
that a respondent’s top choice vehicle is a Toyota Camry and her second choice is a Honda 
Accord. A Toyota Camry PEV offering in our model would reduce probability of purchasing 
the conventional Camry and not affect the probability of purchasing the Honda Accord. 
To avoid this issue would require a dramatically longer survey to estimate probabilities of 
switching from one make-model to another make-model (e.g., from the Camry to the Accord) 
when a PEV is only offered for one of the two make-models. If the empirical model allowed 
for such substitution patterns, the simulations would predict higher PEV sales. 

 
4.6 Other Sources of Demand Heterogeneity 

In our simulations, we find that the higher income groups purchase PEVs at higher rates 
(note that the simulation results presented later in the paper show total PEV sales predicted 
by income group, but the income groups are of different sizes). We also find by interacting 
the PEV indicator in the conditional logit model with various demographics that households 
with more than one vehicle and households that live closer to the coast are more likely to 
purchase a PEV, although these findings are not statistically significant.19 These findings 
are consistent with characteristics of PEV purchasers over the last few years. 

We currently accommodate heterogeneity in demand for PEVs by vehicle technology 
 
 

 

19Although respondents were instructed to assume that residential charging would be provided with 
the purchase of a PEV, some respondents might have updated this to reflect increased installation costs for 
multi-family housing relative to single-family housing. For our sample, we find no difference in PEV purchase 
probabilities between households that live in single, detached houses and those who do not. 
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(BEVs, PHEVs and ICEs), body size and types, as well as some household characteristics 
such as income, number of children, number of pre-existing vehicles in household fleet. In 
related work (Sheldon, DeShazo, and Carson, 2015), we explore a number of other sources 
of preference heterogeneity, and associated consumer segmentation that are not directly 
germane to questions of rebate policy design. The factors include vehicle range, cost per 
mile driven, gasoline costs, commuting patterns, access to High Occupancy Vehicle lanes, 
work place charging opportunities as well as household age, education, housing type, and 
political attitudes. 

 
4.7 State Level Plug-In Electric Vehicle Policies 

Currently, several states offer financial incentives that reduce the purchase price for PEVs 
through direct rebate, tax credit, and sales tax exemptions. Table 7 show the incentives of- 
fered by these states. The amount of incentive PEV buyers receive can be determined 
through a few different methods. California provides fixed rebates, and the amount is lower 
for PHEVs than BEVs. Some other states, such as Massachusetts and Pennsylvania, provide 
fixed amount of rebates for vehicles with battery capacity above a certain threshold. Col- 
orado, Maryland, and South Carolina determine the amount of incentive by battery capacity, 
and while they set a maximum amount for rebate, they do not fix the amount for which each 
vehicle model is eligible. In states like Illinois, Georgia, Louisiana, and West Virginia, PEV 
buyers multiply the MSRP by a percentage to determine the incentive amount they are 
eligible for; if the amount is above the maximum set by the state, they receive the maxi- 
mum incentive available. New Jersey and Washington State provide sales tax exemptions 
for BEVs, but not PHEVs. 

The California Clean Vehicle Rebate Projects currently provide rebates of $2,500 for 
BEVs and $1,500 for PHEVs. As of August 2014 this program had offered more than 50,000 
rebates totaling over $100 million since its inception in 2010. Plug-in electric vehicles are 
also eligible to use high occupancy vehicle lanes in California until January 1, 2019. 

 

5 Results and Discussion 

We use these simulations to evaluate a variety of alternative rebate policy designs, the 
results of which are presented in Tables 8, 9 and 10. These results characterize the perfor- 
mance of alternative policy designs over approximately the next 3 years (i.e., 2014-2016) in 
California. They assume that consumers face the same choice set of PEVs and prices that 
are currently available in the California market and that annual new vehicle sales will be flat 
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over the next three years. 
 

5.1 Simulating the California Status Quo Rebate Policy 

We first simulate the status quo rebate policy in California, which offers all income classes 
the same rebates of $2,500 for the purchase of a BEV and $1,500 for the purchase of a PHEV. 
Table 8 describes the baseline number of BEVs and PHEVs purchased by each income class 
(i.e., the number of BEVs and PHEVs that would have been purchased even if there was no 
rebate) as well as the additional vehicles induced by the policy design. 

Micro-dynamics across income groups and vehicle technologies. Next we reflect 
on two observed patterns predicted earlier by our model that can be observed in the simu- 
lation results for the status quo rebate policy as shown in Table 8. First, these simulated 
estimates reflect the consumers’ relative ex ante preferences for PHEVs over BEVs in nearly 
every income class, with consumers in several income classes purchasing 2 to 3 times as many 
PHEVs as BEVs. Second, in general, the lower income classes have lower ex ante values for 
both BEVs and PHEVs, purchasing fewer vehicles than do the middle and upper-middle 
income classes.20 

We find that lower income classes are typically more responsive to the rebate dollars due 
to their higher marginal utility of income. Interestingly, consumers in the highest income 
class (above $175,000) appear to behave somewhat differently (see Table 8). Their ex ante 
value for PEVs is lower than that of the middle income classes, perhaps reflecting their 
preference for high performance luxury vehicles, which are less likely to be found among 
existing PEVs. In addition, unlike any other income class, they prefer BEVs (4,060) to 
PHEVs (3,371), revealing the importance of the Tesla Model S for this income class. 

A cost-eff eness measure. For the status quo policy, the total of additional vehi- 
cles purchased across all income classes is estimated to be 9,699 over the next three years. In 
Table 9, we calculate the revenue costs by income group and by vehicle technology. Summing 
the rebates over vehicle type and income class gives us the estimated total status quo pro- 
gram costs of $291 million over the next 3 years. Dividing the additional vehicles purchased 
by the total cost gives us a policy cost-effectiveness measure which we calculate to be $30,017 
per additional vehicle as shown in Table 10. For the status quo policy, every additional PEV 
purchased (over the baseline of what would have been purchased in the absence of rebates) 
requires California to spend $30,017 per vehicle. Our simulation suggests that 42% of the 
value of the rebates allocated goes to consumers making less than $75,000 under the status 
quo policy. 

 
 

20The relative population shares of the income groups are 13% (Under $25k), 21% ($25-$50k), 18% 
($50-$75k), 15% ($75-$100k), 24% ($100-$175k), and 9% (Over $175k). 
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The cost effectiveness of the simulated policies is driven by the ratio of marginal to infra- 
marginal PEV purchases, as predicted in Section 3. Ultimately, the simulations suggest it 
is optimal to allocate higher rebates to products for which consumers have lower ex ante 
values (BEVs) and to consumers who have lower ex ante values (lower income consumers) 
because they have fewer infra-marginal purchases. The simulations also suggest it is optimal 
to allocate higher rebates to consumer sectors that are more responsive to the rebates (in 
this case, consumers with higher marginal utilities of income are more responsive) because 
they have more marginal purchases. In Table 11 we solve for the optimal rebate schedule 
that maximizes PEV sales, holding the budget equal to the status quo policy. This policy 
equalizes the ratio of marginal to non-marginal PEV purchases by allocating higher rebates 
to consumer-product segments with lower but steeper demand curves. 

Comparisons with other rebate policies. Our model predicts that 148,636 PEVs 
would have been sold in the absence of the status quo policy.  Note, though, that these 
consumers would still be eligible for the larger federal tax incentive (up to $7,500) as well 
as local government rebates and reduced-cost parking and charging policies. We find that 
the current rebate, which has a weighted value across BEVs and PHEVs of about $1,838, 
induces the purchase of 9,699 PEVs, a 7% increase in PEV sales, or a 0.2% increase in total 
market share. As a point of comparison, Sierzchula et al. (2014) use ordinary least squares 
regression analysis of financial incentives in 30 countries to suggest that an increase in rebate 
level of $1,000 is correlated with an increase in the observed market share of .06% for PEVs. 

We are able to compare this estimate to two other types of vehicle rebate studies, those for 
hybrid electric vehicles (HEVs) and those for scrappage, or “Cash for Clunkers,” programs. 
Analyzing the Energy Policy Act of 2005, Jenn et al.  (2013) find that for most vehicles, 
rebates levels in the $1,000-$3,000 range are correlated with a 7%-12% increase in sales. 
Gallagher, Sims, and Muehlegger (2011) find that a tax incentive of $1,000 is associated 
with a 3%-5% increase in sales for HEVs, while a comparable sales tax waiver is associated 
with a 45% increase in HEV sales. Analyzing the Canadian Hybrid Electric Vehicle rebate 
programs in different provinces, a Chandra, Gulati, and Kandlikar (2010) ordinary least 
square regression analysis finds that a rebate increase of $1,000 is correlated with an increase 

in hybrid sales of 26%. 
The federal and several state Cash for Clunkers rebate programs have been evaluated. 

Analyzing the Consumer Assistance to Recycle and Save Act (2009), Huang (2010) uses a 
regression discontinuity approach to infer that an $1,000 rebate causes a 7% increase in sales 
of more fuel efficient vehicles. Gayer and Parker (2013) find the same program causes a 
6%-15% monthly increase in market share at various months during the program. Other 
evaluations include Li, Linn, and Spiller (2013) and Mian and Sufi (forthcoming). 
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We find that our estimate falls within the range produced by existing studies but is on 
the lower end of the distribution. That a rebate of a similar magnitude would be slightly less 
effective for PEVs than for HEVs or other fuel efficient vehicles should not be surprising for 
several reasons. First, PEVs require consumers behaviorally change their refueling practices, 
including purchasing an at-home charging station in most cases. Second, this study was 
conducted during a period of high unemployment and lower vehicle purchases than the 
timeframes utilized by some of the HEV studies that produced higher market share estimates 
(Gallagher, Sims, and Muehlegger, 2011). 

 
5.2 Changing Rebate Levels Across Vehicle Technologies 

Alternative rebate policies 1 and 2 explore the effects of equalizing the rebates and uni- 
formly lowering the rebates across the vehicle technologies, respectively. 

Equalizing rebates across vehicle technologies. Some observers have argued that 
PHEVs appear to generate similar magnitudes of electric miles traveled and should therefore 
be given rebate levels comparable to BEVs. Policy 1 illustrates what would happen in this 
market if policymakers reduce the BEV rebate by $500 (from $2,500) and increase the PHEV 
rebate by $500 (from $1,500), making the effective rebate for both vehicle technologies $2,000. 

To examine the effects of Policy 1, consider the response of consumers in the $25,000- 
$50,000 income class in Table 8. Compared to the status quo policy, these consumers will 
purchase slightly fewer additional BEVs (614 versus 775, a decrease of 161 vehicles or 21%) 
and modestly more PHEVs (1,716 versus 1,278, an increase of 438 or 34%). The large increase 
in PHEV purchases reflects larger consumer ex ante values for the PHEVs. Therefore, more 
consumers were relatively more likely to buy PHEVs even before their rebate was increased. 

As a result of reducing the rebate on the BEVs by $500, its cost-effective measure (BEV 
budget divided by additional BEVs sold) improves (falling from $32,691 to $32,445 per 
vehicle). However, the reverse is true for the $500 increase in rebate levels for PHEVs, 
causing PHEV cost-effectiveness (PHEV budget divided by additional PHEVs sold) to fall 
(rising from $28,059 to $28,981 per vehicle) compared to the status quo policy. The net 
effect is to slightly worsen total cost effectiveness of the policy to $30,044 per induced PEV 
purchase versus $30,017 under the status quo policy. Thus, even if the magnitude of the 
positive externality associated with driving a PHEV were equal to that of driving a BEV, 
our analysis suggests that equalizing the rebate would not be a cost-effective use of public 
funds. Consideration needs to be given not just to the change in the total number of PHEV 

vehicles sold under Policy 1 but also to the revenue opportunity costs. 
This effect also is seen at the programmatic level. In comparing the status quo policy 
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with Policy 1 of equal rebate levels, many more additional vehicles are sold under Policy 
1, increasing from 9,699 to 10,602, an increase of 9% in the number of additional PEVs 
purchased, which is driven by a 30% in the number of additional PHEVs purchased. The 
total cost of the program rises from $291 million to nearly $319 million. This is largely 
because Policy 1 increases the rebate by $500 to the 99,148 consumers who would have 
purchased a PHEV in the absence of any rebate, and even though it induces an additional 
7,349 PHEVs to be purchased. This is offset slightly by a $500 rebate reduction to the 49,508 
BEVs that would have been purchased without the policy and a reduction in the number of 
additional BEVs sold by only 848. 

In summary, increasing relative rebates on vehicle technologies with relatively higher 
consumer ex ante values increases the total additional number of vehicles purchased ceteris 
paribus. However, increasing relative rebates on vehicle technologies with relatively higher 
consumer ex ante values worsens the cost-eff ctiveness of the overall program since it in- 
creases the magnitude of the rebate payouts to those who would have purchased the higher 
valued vehicle technology anyway. 

Uniformly reducing the rebate levels across technologies. Policymakers might 
consider uniformly reducing rebate levels because budgetary pressure or a belief that gov- 
ernment interventions are no longer justified. In Tables 8 and 9, Policy 2 reduces both 
the BEV and PHEV rebate levels by $500, from $2,500 and $1,500, respectively. In com- 
parison with the status quo policy, we observe consumers in all income classes purchasing 
fewer additional PHEV and BEV vehicles. The total reduction in additional vehicles can 
be observed by comparing the 6,999 additional vehicles purchased under Policy 2 with the 
9,699 additional vehicles purchased under the status quo policy, a difference of roughly 2,700 
additional vehicles or a 28% reduction. Total policy costs fall by over $80 million since both 
the eligible consumers in the baseline and additional consumers all receive lower rebates by 
$500. However, because of the commensurate fall in the number of additional vehicles under 
Policy 2, the cost-effectiveness performance of Policy 2, relative to the status quo, improves 
only a small amount, falling from $30,017 to $29,778. While uniformly lowering the eligible 
rebates does lower total program costs, it improves cost-effectiveness only minimally. 

Allocative equity with reduced rebates. Some policymakers have suggested reducing 
rebate levels because they view the status quo policy as favoring wealthy consumers. We are 
able to evaluate the allocative impacts of moving from the status quo policy to a reduced 
rebate level policy, such as alternative Policy 2, which achieves a uniform reduction of $500 
in all rebates. What we observed is that allocative equity does not change greatly when 
levels are reduced. We use the percent of rebates allocated to consumers with incomes of 
less than $75,000 as a measure of allocative equity. The status quo policy allocates 42% 
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of rebates to consumers with incomes less than $75,000 while Policies 1 and 2 also allocate 
approximately 42% to similar consumers. 

 
5.3 The Effect of a Vehicle Price Cap on Rebate Eligibility 

Recently policymakers at the California Air Resources Board have proposed a price cap 
as means to increase the effectiveness and equity of California’s rebate policy. Such a policy 
design would allow only vehicles below a certain price level to qualify for a rebate. For Policy 
3, we consider a vehicle price cap of $60,000, the results of which we present Tables 8, 9 
and 10. For the California market, Policy 3 would historically exclude only the Tesla Model 
S (a BEV) from a rebate but would prospectively also exclude the Porsche Panamera and the 
Cadillac ELR (both PHEVs) from a rebate. Our vehicle choice model captures the consumer 
response for all of these vehicles. 

The results of making only vehicles under a price cap of $60,000 eligible for the current 
rebates are shown in Tables 8, 9 and 10 by comparing Policy 3 with the status quo. Focusing 
on where the relative impacts are likely to be greatest, consider consumers with incomes 
over $175,000 for Policy 3. While these wealthy consumers purchase slightly fewer additional 
PHEVs (377 vs. 389), they purchase many fewer BEVs (194 vs. 557) when shifting from 
the status quo to a price cap of $60,000. If the policy goal was to give Tesla owners fewer 
rebates, then this approach appears to succeed. Smaller reductions in relative purchases of 
PHEVs and BEVs occur for consumers in the other income classes, reflecting the fact that 
fewer of them are affected by a price cap of $60,000. 

In aggregate, the shift from the status quo to a price cap results in a reduction in the 
total number of additional vehicles being sold (8,651 vs. 9,699, a 10% reduction). This 
policy design also significantly improves the cost-effectiveness of each additional vehicle sold, 
causing the cost to fall substantially from $30,017 to $22,075, a 26% reduction. What is 
perhaps most surprising is how much the total program costs fall, from $291 million to $191 
million, a reduction of around $100 million, or 34%. The policy decision here may hinge 
on beliefs about how much technology from these high end vehicles gets filtered down later 
to other market segments, for example, with Toyota’s adoption of a substantial amount of 
Tesla technology into a BEV version of its popular RAV 4. 

 
5.4 Income-Tested Rebate Policies 

Another proposed approach to redesigning the existing rebate program is to give con- 
sumers in lower income classes relatively higher rebates. Policymakers may choose to do 
this because either they know that targeting rebates towards consumers with lower ex ante 
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values will improve cost-effectiveness or because they are concerned about improving this 
program’s allocative equity. There are several designs this policy could take. 

Policy 4 assesses an increase in rebate levels but also a cap on income eligibility, meaning 
consumers above a specified income ($100,000 for this policy) do not qualify for the rebate. 
All consumers making less than $100,000 would receive a rebate of $5,000 for BEVs and 
$3,000 for PHEVs. Compared to the status quo policy, this policy design results in signif- 
icantly more additional PEVs being sold; increasing from 9,699 to 13,471 for a 3,772, or 
39% increase. This policy design also represents an increase in cost-effectiveness, dropping 
from $30,017 to $26,677 for a $3,340 reduction, or an 11% improvement. However, despite 
reduction in dollars spent per additional vehicle, the 39% increase in the additional number 
of vehicles sold caused the total cost of this policy design to increase from $291 million for 
the status quo to $359 million, for an increase of over $68 million, or 23%. Allocative equity 
increases from 42% for the status quo policy to 73% for this policy. Thus, this policy design 
improves the number of additional PEVs sold, policy cost-effectiveness, and allocative equity 
but it does substantially increase the total cost of the program. 

We next consider a progressive rebate schedule, which is designed to bring down total 
program cost. Policy 5 offers progressive rebate levels with an income cap. For BEVs, this 
policy would offer consumers making 1) less than $25,000, a rebate of $7,500, 2) $25,000- 
$50,000, a rebate of $5,000, 3) $50,000-$75,000, a rebate of $2,000, and 4) over $75,000, no 
rebate. Consumers purchasing a PHEV in these same income categories would receive $4,500, 
$3,000, and $1,000, respectively. This policy results in approximately the same number of 
additional PEVs being sold as does the status quo policy: 9,434 vehicles compared to 9,699 
vehicles for the status quo. This policy is also among the most cost-effective, comparable to 
the price cap policy (3) at $22,743 per additional PEV compared to $22,075 for the price 
cap policy. Its total policy costs are also among the lowest of any policy considered so far. 
This policy has total cost of $215 million compared to $291 million for the status quo policy, 
a reduction of $77 million or 26%. This policy scores 100% on our allocative equity measure 
since all of the rebates go to consumers making less than $75,000. Policy 5 is therefore 
superior to the status quo policy along all policy performance dimensions. 

 
5.5 Income-Tested Policies with Price Caps 

Lastly, we may try to improve these income-tested policies by adding price caps. In- 
tuitively, we expect the addition of a vehicle price cap to reduce the number of additional 
vehicles sold but also to improve the cost-effectiveness measure, reduce total costs, and 
possibly to improve allocative equity. 
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Policy 6 evaluates the addition of a vehicle price cap of $60,000 to Policy 4 (Policy 4 
generated the largest number of additional PEVs purchased, improved cost-effectiveness, 
and allocative equity but did so at the largest program costs.). Adding a vehicle price cap 
as in Policy 6 causes approximately 1,000 fewer vehicles to be purchased compared to Policy 
4 but this still represents a 2,753 or a 28% increase in additional vehicles purchased over the 
status quo policy. Cost-effectiveness improves significantly falling from $26,667 to $21,349 
per additional vehicle purchased when comparing policies 4 and 6. Allocative equity is about 
the same across the policies 4 and 6. However, total program cost falls dramatically from 
$360 million to $266 million, a $54 million or 15% reduction comparing policies 4 and 6. 
It should be noted that Policy 6 costs of $266 million are less than the $291 million of the 
status quo program. Policy 6 represents an improvement over the status quo policy along 
all performance dimensions. 

Policy 7 adds a vehicle price cap to Policy 5, which has a progressive rebate schedule 
capping income eligibility at $75,000. Recall that Policy 5 was already superior to the status 
quo policy along all dimensions. However, adding the vehicle price cap reduces the additional 
number of vehicles sold to 8,837 from 9,699 under the status quo policy, a reduction of 
862 vehicles or 9%. While a net reduction in the number additional vehicles sold may be 
viewed as an unacceptable consequence of this policy by some, it does produce the greatest 
improvement in policy cost-effectiveness, reducing public dollars spent per additional vehicle 
from $30,017 to $18,910, a reduction of $11,007 or 37% per vehicle. It also reduces the total 
program costs from $291 million to $167 million, a savings of $124 million, or 43%. 

 

6 Conclusion 

Our objective has been to illustrate how commonly used “second-best” policies can lever- 
age several types of heterogeneity across consumers or products in order improve policy 
performance. These include differences in consumers’ ex ante value (i.e., willingness to pay) 
for specific technologies, their marginal utility of income, and the price levels of the tech- 
nologies. These difference can be used to improve a broader set of policies that rely on 
price subsidies, rebates, tax credits, sales tax exemptions, and subsidized financing to target 
consumers’ adoption of technologies such as alternative fuels and vehicles, energy and water 
efficient technologies, and renewable energy technologies, among others. 

As we show, the economic information needed to identify how to incorporate consumer 
heterogeneity can be obtained from relatively simple empirical consumer choice studies. 
Even in the case of mis-measurement, e.g., if the estimated price elasticity of demand is 
inaccurately estimated, the basic tenants of our theoretical model and proposed policy mod- 
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ifi still hold. The results of our policy simulations would be the same in direction 
though likely of increased or decreased magnitude. 

Our basic approach enables economists to identify feasible superior policy designs. Our 
specific analysis suggests that policymakers can re-design PEV rebate programs such as Cal- 
ifornia’s to induce the sale of more PEVs, achieving greater allocative equity at a lower total 
cost to the state taxpayers. First, we focus on two policy designs that have the ability to 1) 
increase total or hold constant the additional PEVs purchased, 2) decrease total government 
costs, and 3) increase allocative equity. Our analysis of Policy 5 shows that without a signif- 
icant reduction in the number of additional PEVs purchased, we could dramatically increase 
allocative equity while saving $77 million compared to the current policy. Similarly, Policy 
6 offers the greatest number of additional PEVs sold (28% greater than the status quo) for 
a policy that costs less (by 9%) than the status quo policy. 
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Figures and Tables 
 

Figure 1: Marginal versus Non-Marginal PEV Purchase Probability 
 

  
(a) (b) 

 

  
(c) (d) 
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Figure 2: New Car Buyer Survey: Top Vehicle Choice 
 
 

 
 
 
 
 
 
 
 

Figure 3: New Car Buyer Survey: Top Vehicle Choice 
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Figure 4: New Car Buyer Survey: PEV vs. Conventional Vehicle Choice Module 
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20mi/gal 

Table 1: Attribute Levels 
 
 

 

Purchase Price1  (% of conventional) 
 

Gasoline 100% 
BEV 105%, 115%, 125%, 150% 
PHEV 105%, 115%, 125%, 150% 
Gasoline Refuel Cost ($ per gal) 
Gasoline2 $4.00, $4.40, $4.80, $5.60 
BEV n/a 
PHEV3 $2.00, $2.20, $2.40, $2.80 

 
 

Electric Refuel Cost4 ($ per gal equivalent) 
Gasoline    n/a 
BEV $0.90, $1.10, $1.50, $2.50 
PHEV     $0.90, $1.10, $1.50, $2.50 
Gasoline Range (miles) 

 

Gasoline 300 
BEV 300 
PHEV 0 
Electric Range (miles) 
Gasoline n/a 
BEV 50, 75, 100, 200 
PHEV 10, 20, 40, 60 

 
 

HOV Access 
Gasoline no 
BEV no, yes 
PHEV no, yes 

 
 

 

1The respondent sees price in dollars. For example, a respondent who selected a conventional model that costs $30,000 would 
see BEV and PHEV versions of that model that cost $31,500, $34,500, $37,500, or $45,000. 
2At the time the survey was administered, average gasoline cost in California was approximately $4 per gallon. 
3The average gasoline fuel economy of PHEVs as of December 2013 was 41mpg, which is roughly double the fuel economy of 
our gasoline vehicle universe of 20mpg. Therefore we choose a baseline gasoline refueling cost for PHEVs that is half that of 
gasoline vehicles. 
4At the time the survey was administered, the average overnight electricity rate in California was roughly 16 cents per kWh and 
the average vehicle economy of electric vehicles was 3.5 miles per kWh, suggesting an average cost per electric mile of $0.046. 
The average cost per mile of gasoline vehicles in our vehicle universe is    $4/gal = $0.20 per mile. Thus on average, refueling 
cost for electric miles is 23% of the $4 per gallon refueling cost for gasoline miles, or $0.92/gal. Therefore we choose a baseline 
electric refueling cost of $0.90 per gallon equivalent. 
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Table 2: UCLA New Car Buyer Survey Population† 
 

 Caltrans Survey, 
Full Population, 

Weighted 
Population 

Caltrans Survey, 
New Car Buyers, 

Weighted 
Population 

UCLA New Car 
Buyer Survey, 

Weighted 
Population 

Household Size 
1 person 

 
24.5% 

 
16.3% 

 
13.2% 

2 people 30.0% 30.2% 33.5% 
3 people 16.4% 18.7% 19.8% 
More than or equal to 4 people 29.1% 34.9% 33.4% 
Number of Household Vehicles 
None 

 
8.0% 

 
3.7% 

 
2.8% 

1 32.7% 26.3% 29.6% 
2 37.2% 42.9% 42.3% 
More than or equal to 3 vehicles 22.0% 27.2% 25.3% 
Ethnicity 
White 

 
68.7% 

 
75% 

 
75.3% 

African American 4.4% 4% 6.5% 
Multi-Racial 7.1% 3% 1.5% 
Other 19.8% 18.6% 16.8% 
Household Ownership 
Own 

 
72.2% 

 
76.8% 

 
62.0% 

Rent 27.6% 23.0% 35.0% 
Other 0.1% 0.0% 2.9% 
Income 
<10k 

 
5.6% 

 
2.9% 

 
5.1% 

10-25k 16.2% 9.8% 7.6% 
25k-35k 10.4% 7.4% 7.7% 
35k-50k 13.6% 11.7% 9.4% 
50k-75k 15.9% 16.1% 16.9% 
75k-100k 12.8% 15.2% 22.5% 
100k-150k 11.9% 16.1% 18.8% 
>150k 13.6% 21.0% 12.1% 
Drivers in Household 
None 

 
4.9% 

 
1.6% 

 
0.3% 

1 30.9% 23.2% 19.4% 
2 45.2% 50.9% 51.1% 
3 13.9% 17.4% 16.3% 
More than or equal to 4 drivers 5.2% 6.8% 6.8% 
Sex 
Male 

 
48.2% 

 
49.1% 

 
51.3% 

Female 51.8% 50.7% 48.5% 
Age 
Under 18 

 
24.2% 

 
0.1% 

 
0.0% 

18-24 10.2% 2.0% 16.2% 
25-54 38.5% 50.8% 58.0% 
55-64 10.7% 27.7% 14.0% 
65 or over 16.5% 19.4% 10.2% 
Employment 
Employed 

 
54.0% 

 
66.7% 

 
63.3% 

Unemployed 46.0% 32.9% 36.7% 
†: Compared to Caltrans (2013) California 2010-2012 Household Travel Survey 

Continued on next page 
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Table 2: UCLA New Car Buyer Survey Population,† continued from previous page 
 Caltrans Survey, 

Full Population, 
Weighted 

Population 

Caltrans Survey, 
New Car Buyers, 

Weighted 
Population 

UCLA New Car 
Buyer Survey, 

Weighted 
Population 

Household Type 
Single family, detached 

 
69.2% 

 
74.9% 

 
64.9% 

Single family, attached 7.8% 7.3% 9.9% 
Mobile Home 3.3% 1.9% 2.6% 
Building with 2 or more apartments 19.5% 15.7% 22.2% 
Boat, RV, Van, etc. 0.0% 0.0% 0.2% 
Education 
Not a high school graduate, 12 grade or less 

 
7.4% 

 
3.4% 

 
7.1% 

High school graduate 14.8% 11.0% 24.7% 
Some college credit but no degree 18.7% 18.1% 23.2% 
Associate or technical school degree 11.4% 11.0% 10.6% 
Bachelor’s or undergraduate degree 26.2% 30.4% 21.0% 
Graduate or professional degree 21.4% 26.0% 13.2% 
Vehicle Body Type 
Sedan 

 
47.7% 

 
46.3% 

 
42.2% 

SUV 18.0% 19.9% 28.3% 
Truck 11.5% 10.5% 3.1% 
Coupe 6.5% 6.2% 6.4% 
Convertible 1.2% 1.4% 9.8% 
Hatchback 3.6% 3.7% 5.6% 
Wagon 3.1% 3.3% 2.3% 
Minivan or Van 8.3% 8.7% 2.2% 

†: Compared to Caltrans (2013) California 2010-2012 Household Travel Survey 
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Table 3: Estimation Results: Brand Choice 
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Table 4: Estimation Results: Body Choice 
 
 

 

Variable Estimated Coefficient 
Compact Sedan  1.662*** 

(0.108) 
Midsize Sedan 1.690*** 

(0.108) 
Full-size Sedan 1.028*** 

(0.111) 
Compact SUV 1.455*** 

(0.110) 
Midsize SUV 1.295*** 

(0.112) 
Full-size SUV 0.667*** 

(0.118) 
Van or Minivan -0.497*** 

(0.163) 
Hatchback 0.616*** 

(0.126) 
Wagon -0.394** 

(0.157) 
Compact *Number Children -0.201*** 

(0.049) 
Midsize*Number Children -0.171*** 

(0.051) 
Sportscar*Number Vehicles 0.248*** 

(0.030) 
Observations 28,959 

 
 

Standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 
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Table 5: Estimation Results: Body Choice 
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Table 6: Estimation Results: Vehicle Choice 
 
 

 

Variable Estimated Coefficient 
Vehicle Price*Income Under $25k  -0.075*** 

(0.028) 
Vehicle Price*Income $25-50k -0.062*** 

(0.023) 
Vehicle Price*Income $50-75k -0.048*** 

(0.016) 
Vehicle Price*Income $75-100k -0.054*** 

(0.018) 
Vehicle Price*Income $100-175k -0.038*** 

(0.014) 
Vehicle Price*Income Over $175k -0.089*** 

(0.025) 
BEV*SedanHatchback -1.989*** 

(0.205) 
BEV*SUV -2.090*** 

(0.250) 
BEV*Sportcar -2.208*** 

(0.278) 
BEV*VanTruck -1.687*** 

(0.336) 
PHEV -0.333** 

(0.167) 
Range 0.009*** 

(0.001) 
Refuel -0.038 

(0.041) 
HOV 0.261*** 

(0.058) 
Observations 24,940 

 
 

Robust standard errors in parentheses 
*** p<0.01, ** p<0.05, * p<0.1 



43  

Table 7: State Level Incentives 
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Table 8: PEVs Sold by Type of Policy 
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Table 9: PEV Rebate Costs by Type of Policy 
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Table 10: Comparison of Policy Performance Metrics 
 
 

 
 
 

“Allocative Equity” is defined as the percentage of rebate dollars allocated to households with incomes under 

$75,000. 
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Table 11: Optimal Policy for the Status Quo Budget 
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A Appendix 
 

Figure A.1: PEVs on the Market as of Fall 2013 
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