

Plug-In-Vehicle Battery Secondary Use: Integrating Grid Energy-Storage Value

Brett Williams, MPhil (cantab), PhD Program Director, Electric Vehicles & Alt. Fuels, UCLA Luskin Center for Innovation Asst. Adj. Professor, Dept. of Public Policy

2.

UCLA Luskin Center EV Program Sampler

- PEV regional planning for Southern CA Assoc. of Govts (DOE/CEC funding)
- Modeling/mapping PEV demand, built environ. (e.g., multi-unit dwellings, workplaces, public charging), travel destinations, etc.
- 2. Analysis of charging challenges for multi-unit dwellings
- Analysis of real-world use of PEVs by households
- 4. Battery secondary use (V2G and B2G)

Note: Symposium this year on locating, managing, and pricing charging infrastructure

3.

Pi	oject Cost	\$		\$ 0.10	\$ 0.15	\$	0.20	\$ 0.25	\$ 0.30
\$ \$	1,000.00	\$	(195.72)	\$ 2,038.45	\$ 3,155.54	\$	4,272.63	\$ 5,389.71	\$ 6,506.80
\$	3,000.00	\$	(2,603.77)	\$ (369.59)	\$ 747.49	S	1,864.58	\$ 2,981.67	\$ 4,098.76
\$	5,000.00	\$	(5,011.81)	\$ (2,777.64)	\$ (1,660.55)	\$	(543.46)	\$ 573.62	\$ 1,690.71
\$	7,000.00	\$	(7,419.86)	\$ (5,185.68)	\$ (4,068.60)	\$	(2,951.51)	\$ (1,834.42)	\$ (717.33
\$	9,000.00	s,	(9,827.90)	\$ (7,593.73)	\$ (6,476.64)	S	(5,359.55)	\$ (4,242.47)	\$ (3,125.38
\$	11,000.00	\$	(12,235.95)	\$ (10,001.77)	\$ (8,884.68)	\$	(7,767.60)	\$ (6,650.51)	\$ (5,533.42
\$	13,000.00	s.	(14,643.99)	\$ (12,409.82)	\$ (11,292.73)	s	(10,175.64)	\$ (9,058.56)	\$ (7,941.47
\$	15,000.00	s.	(17,052.04)	\$ (14,817.86)	\$ (13,700.77)	s	(12,583.69)	\$ (11,466.60)	\$ (10,349.51
\$	17,000.00	s.	(19,460.08)	\$ (17,225.91)	\$ (16,108.82)	s	(14,991.73)	\$ (13,874.65)	\$ (12,757.56
¢	19,000.00	\$	(21,868.13)	\$ (19,633.95)	\$ (18,516.86)	\$	(17,399.78)	\$ (16,282.69)	\$ (15,165.60

in first life (Mobile Electricity)

- Me- = mobile (untethered) power, vehicle-to building (V2B e.g., V2Home), and vehicle-togrid (V2G) power
- (e.g., Williams & Finkelor 2004, Williams & Kurani 2007)

in second life (repurposing for second use)

- e.g., vehicular cascading/downcycling, repurposing as stationary energy storage (battery-to-grid or B2G)
 - (e.g., Williams and Lipman 2009, 2011)

UCLA Luskin School of Public Affairs

Luskin Center for Innovation

Examining grid benefits with...

A spectrum of product lenses:

- traditional generation
- bulk energy storage
- distributed stationary energy storage
 - utility (e.g., CES)
 - behind the meter (residential, commercial, and industrial end users)
- smart charging
- vehicle-to-grid power

Examining grid benefits with...

A spectrum of technologies:

- Combustion engines
- Pumped hydro
- Compressed air
- Flow batteries
- Batteries
 - New batteries
 - Used batteries
 - Refurbished stationary batteries
 - Vehicular batteries
 - Repurposed plug-in-vehicle (PEV) batteries

UCLA Luskin School of Public Affairs

Luskin Center for Innovation

Battery 2nd use in context: 6-project trajectory

Using a transportation lens to examine distributed energy-storage benefits and grid services:

- 1. 1997: pre-"V2G" fuel-cell Hypercar (RMI)
- 2. 2004: Rental-car parking-lot power plant (UCD)
- 2006: Electric-drive vehicle-to-grid (V2G) net revenues and other "Mobile Electricity" value (UCD)
- 2009: California Electric Fuel Implementation Strategies (CEFIS) project (battery 2nd life preliminary analysis for the CEC) (UCB)
- 5. 2011: CEC/UCD Battery 2nd Life project ("home energy storage appliances"), Task 3 (UCB)
- 6. 2012: NREL Secondary Use project, Task 4.1

V2G, smart charging, & repurposing

- No matter how you design it, V2G is a complex challenge
- Eventually, the rolling stock of battery storage will be hard to ignore
- In the meantime, automakers have to introduce and sell cars with nascent batteries: "hands off"
- Smart charging (G2V) potentially offers less complexity, similar benefits
 - Shouldn't giving up control be rewarded (provider benefits)?:
 - Yellow button: charge me now
 - Green button: give my plug-in hybrid as little as you want, when/how you want, but reward me for providing system benefits...
- Even easier?: storage paid in part for transportation, but that doesn't disconnect and drive away, thereby limiting potential benefits
- Indeed, rather than getting in the way of vehicle commercialization, can we help by creating residual value for propulsion batteries?

UCLA Luskin School of Public Affairs

Luskin Center for Innovation

Battery 2nd use in context: 6-project trajectory

Using a transportation lens to examine distributed energystorage benefits and grid services:

- 1. 1997: pre-"V2G" fuel-cell Hypercar (RMI)
- 2. 2004: Rental-car parking-lot power plant (UCD)
- 2006: Electric-drive vehicle-to-grid (V2G) net revenues and other "Mobile Electricity" value (UCD)
- 4. 2009: California Electric Fuel Implementation Strategies (CEFIS) project (battery 2nd life preliminary analysis, CEC)
- 2011: CEC/UCD Battery 2nd Life project ("home energy storage appliances"), Task 3
- 6. 2012: NREL Secondary Use project, Task 4.1

Battery-second-life report outline

- 1. Introduction: background, scope, glossary
- 2. 1st life: vehicle-specific battery specs and lease costs
- Repurposing & distributed energy storage appliance (DESA) costs for each vehicle-battery type
- 4. 2nd life: look through DESA product lens at various energy storage benefits
- 5. Integrating 2nd-life net benefit into the battery lease, bounding estimates, uncertainty/sensitivity analyses, and alternative scenarios
- 6. Conclusions, directions for future work

Battery=modules+ MMS	Prius PHV	Volt	LEAF
Battery rated kWh	5.2	16	24
Available kWh	3.9	10.4	20.4
Battery type	Panasonic NCM	LG Chem LMO	AESC LMO
Re-rated for 2 nd life (kWh)	4.2	12.8	19.2
"Battery" cost	~\$4,200	~\$8,100	~\$15,000
8-y battery lease payment (per mo.)	\$64	\$122	\$225

Chapter 3: Repurposing

Distributed Energy Storage Appliance Costs

ESA cost	Basis	PHV	Volt	LEAF
component		3kWh/6kW	8kWh/16kW	16kWh/32kW
Battery (modules+mgt. system)	Repurposing cost	\$744	\$1,150	\$1,780
Power conditioning, controls, interfaces	Inflated \$442/kW=CreadyEtAl'02 max. for fully-capable bulk storage	\$3,310	\$8,830	\$17,300
Accessories, facilities, shipping, catch-all	Inflated \$117/kWh=CreadyEtAl'02 for load leveling, arbitrage, and transmission deferral facility at Chino	\$442	\$1,170	\$2,290
10-year operation and maintenance	NPV(\$18/kW-y)=Chino facility. Compare to \$102/y for residential load following	\$828	\$2,210	\$4,330
Installation, residential circuitry	EVSE-style installation costs (sans charger), based on max. power	\$800	\$2,000	\$4,300
	Total HESA cost	\$6,120	\$15,400	\$30,000

Chapter 4: 2nd-life gross benefit

Grid-related energy-storage value

<u>Application</u>	<u>Discharge Duration,</u> Low (h)	<u>Discharge Duration,</u> <u>High (h)</u>
Electric Energy Time-shift	2	8
Electric Supply Capacity	4	6
Load Following	2	4
Area Regulation	0.25	0.5
Electric Supply Reserve Capacity	1	2
Voltage Support	0.25	1
Transmission Support	0.00056	0.0014
Transmission Congestion Relief	3	6
T&D Upgrade Deferral 50th percentile**	3	6
T&D Upgrade Deferral 90th percentile**	3	6
Substation On-site Power	8	16
Time-of-use Energy Cost Management	4	6
Demand Charge Management	5	11
Electric Service Reliability	0.083	1
Electric Service Power Quality	0.0028	0.017
Renewables Energy Time-shift	3	5
Renewables Capacity Firming	2	4
Wind Generation Grid Integration, Short Duration	0.0028	0.25
Wind Generation Grid Integration, Long Duration	1	6

Luskin Center for Innovation

20126

Application	PHV	Volt	LEAF	
Electric Energy Time-shift	\$330	\$880	\$1,720	
Electric Supply Capacity	\$320	\$850	\$1,670	
Load Following	\$800	\$2,130	\$4,180	
Area Regulation	\$8,720	\$23,250	\$45,610	
Electric Supply Reserve Capacity	\$280	\$750	\$1,470	j
Voltage Support	\$2,870	\$7,670	\$15,040	j
Transmission Support	\$1,200	\$3,190	\$6,270	İ
Transmission Congestion Relief	\$60	\$150	\$300	İ
T&D Upgrade Deferral 50th percentile†	\$2,390	\$6,470	\$12,490	
T&D Upgrade Deferral 90th percentile†	\$3,760	\$10,020	\$19,660	İ
Substation On-site Power	\$600	\$1,600	\$3,130	İ
Time-of-use Energy Cost Management	\$730	\$1,960	\$3,840	
Demand Charge Management	\$220	\$580	\$1,140	İ
Electric Service Reliability	\$3,700	\$9,860	\$19,340	
Electric Service Power Quality	\$4,170	\$11,120	\$21,820	j
Renewables Energy Time-shift	\$230	\$620	\$1,220	
Renewables Capacity Firming	\$810	\$2,160	\$4,240	İ
Wind Generation Grid Integration, Short Duration	\$4,680	\$12,480	\$24,480	İ
Wind Generation Grid Integration, Long Duration	\$380	\$1,000	\$1,970	
* lifecycle benefit over 10 years, with 2.5% esce † converted here to approximate 10 years of be but this is not likely at a single location				plication

Regulation: not the focus here

- Hotly contested by other products, technologies
- Would take ~44,000 Volt-based DESAs to provide the 2006–2008 average CAISO regulation up+down requirement of 732MW/y
- Would take 3–4 years to process 44k top-candidate batteries using 4 CA repurposing centers
- GM hoped to produce 45k Volts in U.S. in 2012, a fraction of which would produce top-candidate batteries in CA
- Regulation requirements could rise, but could be provided (if not optimally) by 20 GW of existing regulation-certified capacity in the near-to-mid-term (e.g., up to 20% RPS) (CAISO 2010, p.23)

Application	PHV	Volt	LEAF	
Electric Energy Time-shift	\$330	\$880	\$1,720	
Electric Supply Capacity	\$320	\$850	\$1,670	
Load Following	\$800	\$2,130	\$4,180	
Area Regulation	\$8,720	\$23,250	\$45,610	
Electric Supply Reserve Capacity	\$280	\$750	\$1,470	
Voltage Support	\$2,870	\$7,670	\$15,040	
Transmission Support	\$1,200	\$3,190	\$6,270	
Transmission Congestion Relief	\$60	\$150	\$300	
T&D Upgrade Deferral 50th percentile†	\$2,390	\$6,470	\$12,490	
T&D Upgrade Deferral 90th percentile†	\$3,760	\$10,020	\$19,660	
Substation On-site Power	\$600	\$1,600	\$3,130	
Time-of-use Energy Cost Management	\$730	\$1,960	\$3,840	
Demand Charge Management	\$220	\$580	\$1,140	
Electric Service Reliability	\$3,700	\$9,860	\$19,340	
Electric Service Power Quality	\$4,170	\$11,120	\$21,820	
Renewables Energy Time-shift	\$230	\$620	\$1,220	
Renewables Capacity Firming	\$810	\$2,160	\$4,240	
Wind Generation Grid Integration, Short Duration	\$4,680	\$12,480	\$24,480	
Wind Generation Grid Integration, Long Duration	\$380	\$1,000	\$1,970	
* lifecycle benefit over 10 years, with 2.5% esc † converted here to approximate 10 years of be but this is not likely at a single location				catio
.UG-IN	UCLAI	nekin S	chool of Pul	alic A

Multi-app. value propositions (10-y benefit): Volt

	Sum (double	Total: 90% of biggest,	Total -10% aggregation
Eyer&Corey'10 Value Proposition [6]	counting)	50% of rest	fee
e- energy time-shift + T&D upgrade deferral + e- supply reserve capacity	\$11,800	\$9,900	\$8,900
TOU energy cost management + demand charge mgt	\$2,500	\$1,800	\$1,800
renewables energy time-shift + e- energy time-shift + T&D upgrade deferral	\$11,500	\$9,800	\$8,800
renewables energy time-shift + e- energy time shift + e- supply reserve capacity	\$2,400	\$1,500	\$1,400
T&D upgrade deferral (10 years of value)† + e- service power quality + e- service reliability (equivalent here to Eyer&Corey "distributed storage for bilateral contracts with wind generators" proposition)	\$31,000	\$20,000	\$18,000
storage to service small A/C loads = voltage support + e- supply reserve capacity + load following + transmission congestion relief + e- service reliability + e- service power quality + renewables energy time- shift	\$32,400	\$20,700	\$18,600

Luskin School of Public Affairs

Luskin Center for Innovation

Chapter 5: Results

Integrating results; sensitivity analysis; alternative scenarios

Findings Overview

- Modest potential benefits of incorporating post-vehicle grid value from distributed energy storage into battery lease
 - E.g., "Volt" 8-y battery-only lease reduced 22% (3–30%) by providing multi-app combo related to servicing local A/C loads
- Regulation most valuable distributed energy storage appliance (DESA) application explored, but might provide limited impetus; multiapplication duty-cycles likely needed
- Monte Carlo uncertainty analysis indicates reductions estimated might need significant downward adjustment
- · Large sources of variance:
 - how much value from non-priority DESA applications: deeper investigation into capturing multi-app value needed
 - DESA costs related to power conditioning; co-locate with PV?

UCLA Luskin School of Public Affairs

Luskin Center for Innovation

Additional thoughts

- Unclear if potential system benefits embodied in the lease metric will provide enough impetus
- However, to the extent the prospects for energy storage in general are improved, repurposed energy storage may still be interesting
 - Repurposing burden not yet the weakest link
- Regardless, need to find appropriate and valuable uses for plug-in-vehicle batteries
- Proceed, but proceed with caution
- Evolving future context may change picture

Battery 2nd use in context: 6-project trajectory

Using a transportation lens to examine distributed energystorage benefits and grid services:

- 1. 1997: pre-"V2G" fuel-cell Hypercar (RMI)
- 2. 2004: Rental-car parking-lot power plant (UCD)
- 2006: Electric-drive vehicle-to-grid (V2G) net revenues and other "Mobile Electricity" value (UCD)
- 4. 2009: California Electric Fuel Implementation Strategies (CEFIS) project (battery 2nd life preliminary analysis, CEC)
- 5. 2011: CEC/UCD Battery 2nd Life project ("home energy storage appliances"), Task 3
- 6. 2012: NREL Secondary Use project, Task 4.1

Luskin School of Public Affairs

Luskin Center for Innovation

End-User Product:

Small Commercial/Industrial Q&R, DC, and TOU (Neubauer, Williams, et al. 2012)

- Power quality + reliability aggregate easily
 - Avoided UPS cost (Eyer&Corey'10) yields \$136/kW-y value
- Demand charge + TOU aggregate easily
 - ~\$37k max annual savings from demand charge mitigation
 - Southern California Edison's TOU-GS-3-SOP rate structure
- All four do not: What happens when you have a reliability need immediately following a DC/TOU discharge?
- To conservatively address this, we set aside a Q&R capacity reserve that is maintained at all times.

End-User Product:

Small Commercial/Industrial Q&R, DC, and TOU (Neubauer, Williams, et al. 2012)

Scenario	Q&R % of system power	DC/TOU % of system power	Annual Revenue	Payback period*
1	100%	0%	\$27,200	6.9 y
2	100%	13%	\$33,600	7.5 y
3	100%	36%	\$44,600	10.3 y
4	0%	100%	\$48,900	>15 y

- Annual revenue increases as amount of DC/TOU capacity increases
- But payback period is best without DC/TOU (fewer kWh to buy)

UCLA Luskin School of Public Affairs

Luskin Center for Innovation

Conclusion (Neubauer, Williams, et al. 2012)

- The use of repurposed PEV batteries for end-user quality and reliability needs appears financially sound
 - The financial case could improve significantly if new PEV battery prices fall below \$440/kWh

Utility Product:

Transportable Trans. & Distrib. Upgrade Deferral (Neubauer, Williams, et al. forthcoming)

(Neubauer, Williams, et al. forthcoming)

- Site at T&D congestion points for 1 or so years to avoid investment in upgrade
- Device called on rarely (hours per year), often during relatively well known peak-use hours
- When used, charges at night, provides a deep discharge (like a vehicle's CD mode)
- The rest of the year, layer on Regulation Energy Management (new regulation service) (like a vehicle's CS mode)
- (Details in development)

(from an old RMI report)

Luskin School of Public Affairs

Luskin Center for Innovation

Battery 2nd use in context: 6-project trajectory

Using a transportation lens to examine distributed energy-storage benefits and grid services:

- 1. 1997: pre-"V2G" fuel-cell Hypercar (RMI)
- 2. 2004: Rental-car parking-lot power plant (UCD)
- 3. 2006: Electric-drive vehicle-to-grid (V2G) net revenues and other "Mobile Electricity" value (UCD)
- 4. 2009: California Electric Fuel Implementation Strategies (CEFIS) project (battery 2nd life preliminary analysis, CEC)
- 5. 2011: CEC/UCD Battery 2nd Life project ("home energy storage appliances"), Task 3
- 6. 2012: NREL Secondary Use project, Task 4.1
- 7. Translate second use back into V2G or smart charging??
- 8. Charging business models robust to demand charges and road tax

References

- Williams, B. D.; Moore, T. C.; Lovins, A. B., "Speeding the Transition: Designing a Fuel-Cell Hypercar." In 8th Annual U.S. Hydrogen Meeting, National Hydrogen Association: Alexandria VA, 1997. www.rmi.org
- Williams, B. D.; Finkelor, B., "Innovative Drivers for Hydrogen-Fuel-Cell-Vehicle Commercialization: Establishing Vehicle-to-Grid Markets." In Hydrogen: A Clean Energy Choice (15th Annual U.S. Hydrogen Meeting), National Hydrogen Association: Los Angeles CA, 2004. http://its.ucdavis.edu/hydrogen/Brett.shtml
- Williams, B. D. and K. S. Kurani (2006). "Estimating the early household market for light-duty hydrogen-fuel-cell vehicles and other "Mobile Energy" innovations in California: A constraints analysis." <u>Journal of Power Sources</u> 160(1): 446-453. http://www.sciencedirect.com/science/article/B6TH1-4JRVB7F-2/2/d258d1944768b491ae39493d1506d00c
- Williams, B. D. and K. S. Kurani (2007). "Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: "Mobile Electricity" technologies and opportunities." <u>Journal of Power Sources</u> 166(2): 549-566. http://www.sciencedirect.com/science/article/B6TH1-4MV7531-2/2/5595dc45642a0083cf840733d77c6354
- Williams, B. D. and T. E. Lipman (2009). Strategies for Transportation Electric Fuel Implementation in California: Overcoming Battery First-Cost Hurdles; CEC-500-2009-091; California Energy Commission Public Interest Energy Research (PIER) Transportation Program: Sacramento, http://www.energy.ca.gov/2009publications/CEC-500-2009-091.PDF
- Williams, B. D. and T. E. Lipman (2011). Analysis of the Combined Vehicle- and Post-Vehicle-Use Value of Lithium-Ion Plug-In-Vehicle Propulsion Batteries; report number TBD (in press); California Energy Commission: Sacramento CA
- Williams, B. D.; Martin, E.; Lipman, T.; Kammen, D. "Plug-in-Hybrid Vehicle Use, Energy Consumption, and Greenhouse Emissions: An Analysis of Household Vehicle Placements in Northern California." *Energies* 2011, 4, (3), 435-457. http://www.mdpi.com/1996-1073/4/3/435/pdf

Luskin School of Public Affairs

Luskin Center for Innovation

Thank you for your attention!

http://luskin.edu/ev

bdw@ucla.edu

UCLA Luskin School of Public Affairs

Luskin Center

FOR INNOVATION

and a second sec