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1 Introduction

Policymakers commonly design policies with the goal of increasing consumers’ adoption
of newer, less-polluting technologies, including advanced clean VehiclesE] A common policy
approach has been to grant these advanced clean vehicles access to high occupancy vehicle
(HOV) lanes in an effort to increase the utility that drivers derive from the use of these
vehicles| Historically, nine states adopted such policies for hybrid vehicles. Currently
fourteen states have similar policies for plug-in electric and natural gas vehicles, with more
states likely to offer future policies for hydrogen fuel cell vehicles (DeShazo et al., [2015).

In this paper we identify the causal impacts of such policies on the adoption of plug-in
electric vehicles (PEVs) in the state of California between 2010 and 2013. Complicating the
evaluation of this policy is the fact that HOV lanes are distributed unevenly throughout
the state of California, as are prospective new car buyers who might adopt these vehicles.
Researchers have shown that the average advanced vehicle owner is willing to pay a premium
for access to HOV lanes in the case of both hybrid vehicles (Bento et al., [2014; Shewmake and
Jarvis|, 2014)) and PEVs (Sheldon, DeShazo, and Carson, 2015). In light of this it is somewhat
puzzling that several correlational studies have shown a weak relationship between hybrid
sales and HOV lane access (Diamond, 2008; |Gallagher and Muehlegger, 2011).@ What has
been missing in this literature, and what we estimate for PEVs, is the causal relationship
between variation in geographic access to HOV lanes and geographic sales of advanced clean
vehicles.

We use a generalized propensity score approach to estimate the impact of HOV lanes on
PEV registrations, controlling for the probability of treatment (HOV lane density). Standard
propensity score matching conditions on a binary variable, e.g., whether or not a census
tract is near HOV lanes. However, we are interested in a continuous conditioning variable,
namely, how many miles of HOV lanes a census tract is near. First, we estimate a generalized
propensity score (GPS) for each census tract, which tells us the probability of treatment,
based on a large set of demographics. Controlling for propensity score, we estimate a dose-
response curve, which tells us how PEV registrations change as the number of nearby HOV
lanes increases.

Few papers have employed the generalized propensity score methodology. This paper

LOther types of incentives in place to encourage PEV adoption include a federal rebate program, the
California Clean Vehicle Rebate program, reduced electricity rates for PEVs and publicly subsidized refueling
infrastructure.

2For a discussion of the social costs of these policies see [Bento et al. (2014) and Shewmake and Jarvis
(2014).

3One possible explanation is that supply was constrained in the early hybrid market, resulting in excess
demand in every period regardless of policy.



is a novel application of GPS with several innovations. First, we use an unusual treatment
variable, miles of HOV lanes within a thirty mile radius of the population centroid of a census
tract. Our unit of analysis, the census tract, allows us to explore geographic heterogeneity by
aggregating estimated effects at the metropolitan area level. Second, we use a Least Absolute
Shrinkage and Selection Operator (Lasso) method to select first stage control variables,
resulting in propensity scores that balance observables very well across census tracts with
differing levels of treatment.

We offer the first causal estimate of the impact of California’s HOV lane policy on PEV
adoption, estimating that access to 6, 20, and 100 miles of nearby HOV lanes results 1,
3, and 10 additional PEV registrations in a census tract over the time period analyzed.
To put this in perspective, the mean and median number of PEV registrations per census
tract in this time period was 8.5 and 4, respectively. A back-of-the-envelope calculation in
Section predicts that with a 95% confidence interval, roughly one quarter of California
PEV registrations during 2010-2013 were a result of the HOV lane policy.

2 Background

The primary purpose of high occupancy vehicle (HOV) lanes is to encourage carpooling
in order to decrease congestion and local air pollution. Typically, only vehicles with two
(sometimes three) or more occupants are able to utilize HOV lanes. The decision to designate
or construct HOV lanes is made at the state level, and HOV lanes tend to be located in higher
population density areas.

More recently, various clean vehicles have be granted single-occupant access to HOV
lanes in California. Hybrid vehicles were granted access via a yellow decal program, which
lasted from mid-2005 to mid-2011. Plug-in electric vehicles (PEVs) have free single-occupant
access to HOV lanes through 2019. An unlimited number of white decals are available that
allow battery electric vehicles (BEVs) access to HOV lanes. Plug-in hybrid electric vehciles
(PHEVs) are granted HOV access via green decals. Originally, green decals were to be
allocated to the first 40,000 applicants who purchased a “transitional zero emissions vehicle”
(PHEV). In mid-2014 the green decal limit was increased to 55,000 and has subsequently
been increased to 70,000. As of December 31, 2013, the end of our analysis period, 28,739
green decals had been issued and as such the decal cap was not binding[] While such
programs are not expected to reduce congestion, they are intended to reduce greenhouse gas
emissions and local air pollution.

Relative emissions from electric versus conventional internal combustion engine vehicles

4Details can be found at http://www.arb.ca.gov/msprog/carpool /carpool.htm.



depend on how the electricity fueling the PEV was generated. Electricity generation in Cal-
ifornia tends to be cleaner than other parts of the country. |[Archsmith, Kendall, and Rapson
(2015)) estimate that the benefit of greenhouse gas reductions per electric vehicle in western
states is currently $425. Holland et al.| (2015) estimate that the total environmental benefit
from an electric vehicle, including reduction in local air pollution, is $3,025 in California.

According to the American Road and Transportation Builders Association, the cost of
expanding a four-lane interstate highway to six lanes is approximately $4 million per mile.
However, in terms of HOV lane policies to incentivize PEVs, the policy question is typically
not whether or not to construct new HOV lanes, but rather, whether to give PEVs access
to existing HOV lanes. Thus capital and upfront costs of such policies tend to be low. Such
policies may lead to an increase in the total number of vehicles on the highway, which would
result in congestion costs. Bento et al.| (2014) find evidence that the yellow decal program
led to a net increase in congestion on the I-10W in the Los Angeles area and estimated the
annual social costs of this congestion to be between $0 and $4,500 per additional hybrid
vehicle depending on the time of day the vehicle is on the highway. Little is known about
the heterogeneity of this congestion cost across locations.

Sheldon, DeShazo, and Carson| (2015) find that the average new car buyer in California
is willing to pay about $900 for free single-occupant HOV lane access. Bento et al.| (2014))
estimate the average annual rent of a hybrid HOV sticker in southern California to be $743,
with a net present value of $4,800. Shewmake and Jarvis (2014) estimate an average premium
of $3,200 for a hybrid with an HOV sticker, which translates into a yearly value of $625.
We offer the first causal evaluation of such incentives and find that roughly one quarter of
California PEV registrations during 2010-2013 were a result of the HOV lane policy.

3 Methodology

In an ideal experimental setting, we would randomly assign households the right to utilize
HOV lanes as single occupants of PEVs. We would compare subsequent PEV registrations
of the treatment versus control group within a census tract and see how treatment effects
vary across census tracts with access to differing quantities and qualities of HOV lanes.

Since we cannot manipulate California’s HOV lane policy, we compare PEV registrations
across census tracts with differential HOV lane access. PEV registrations are also influenced
by household preferences, income, education, driving needs, and many other factors that vary
across census tracts and could confound estimated effects of the HOV lane policy on PEV
registrations. Potential identification strategies include 1) standard regression analysis con-

trolling for all observables that may influence PEV registrations, 2) a discrete choice model



of vehicle purchases, 3) a differences-in-differences framework, 4) a regression discontinuity
framework, or 5) a generalized propensity score approach. There is almost no variation in
HOV lane miles over time in California during the timeframe in quesion, thus we are limited
to a cross sectional analysis.

Standard regression analysis is susceptible to selection on unobservables, since we are
unlikely to control for every variable that influences PEV registrations. Furthermore, to
achieve the same level of flexibility in model specification as a generalized propensity score
approach requires a substantial reduction in power.

A discrete choice framework would model the consumer’s vehicle choice problem, where
a consumer chooses between vehicles with varying attributes, including HOV lane access.
This would require registration data for all vehicle types, not only PEVs and hybrids, to
which our data is limited.

A differences-in-differences framework would compare PEV registrations in census tracts
with differing levels of treatment before and after the implementation of the HOV lane
policy. We are not able to implement this strategy due to two reasons. First, we do not
have BEV registration data prior to the implementation of the white sticker program and
cannot construct a pre-period. Second, the green sticker program began concurrently with
the release of several new PHEV models. Prior to the green sticker program, only one PHEV
model was widely commercially available, and had not been so for long. Thus the pre-period
for the green sticker program is limited to very early adopters of one model.

The concurrent release of many PHEV models and the beginning of the green sticker
program rules out a regression discontinuity framework, which would attempt to identify a
change in PEV registrations over a small window around the implementation of the policy.
Furthermore, vehicle purchase decisions may lag such a policy announcement.

Propensity score matching is a technique to remove biases in the comparison of treatment
groups such that the effectiveness of treatment can be estimated. Standard propensity score
matching conditions on a binary treatment variable; however, we are interested in evaluat-
ing the effect of a continuous treatment, i.e., HOV lane density. Therefore we follow the
generalized propensity score (GPS) approach as detailed by [Hirano and Imbens (2005)) to
evaluate the effect of HOV lanes on our outcome variable, PEV registrations. According to
Angrist and Piscke (2008)), a propensity score approach is preferred to a standard regression
approach when it is easier to model treatment than outcome. This tends to be the case when
treatment is a result of government policy. Indeed, the state government decides where to
build HOV lanes, typically in more congested locations. In Section we estimate the
generalized propensity score (GPS) as a function of demographics, including population den-

sity and commuting patterns. In Section we find compelling evidence that controlling



for the propensity score nearly eliminates all differences in observables across census tracts
with different levels of treatment (HOV "lane-miles").

This methodology has several advantages. First, we reduce the dimensionality of our
control variables from hundreds to one, the generalized propensity score (GPS). If the as-
sumptions of the framework hold, the propensity score controls for all observable and non-
observable differences across census tracts. Thus, in order to estimate treatment effects, we
need only control for propensity score. Second, we can estimate marginal effectiveness of
treatment at different treatment levels rather than estimating the average effect of treat-
ment. This allows us to better understand heterogeneity across treatment groups. Third,
this approach is flexible. For example, we assume that controlling for covariates, treatment
follows a lognormal distribution. The GPS is a measure of how likely a census tract is to
have a certain number of HOV lane-miles, given its covariates and assuming a lognormal

distribution. Such assumptions would not be possible using standard regression techniques.

3.1 The Generalized Propensity Score Approach
3.1.1 First Stage

In regular propensity score matching, the first stage involves a probit or logit regressionE] of
the binary treatment variable on a vector of variables that predict treatment. The propensity
scores are the predicted values of this regression and are the probability that a unit is treated.

With a continuous treatment, the first stage involves fitting a distribution, often normal,
to the treatment variable, controlling for a vector of variables that predict treatment. The
generalized propensity score, or GPS, is the probability distribution function (or probability
mass function) evaluated at the level of treatment using the predicted distributional parame-
ters. Thus the GPS is a measure of the probability that a unit receives its level of treatment,
given its characteristics.

The goal of the first stage is not to establish a causal relationship between predictive
covariates and treatments. Rather, the goal is to estimate propensity scores that best control
for observed differences in treatment groups. Here, this involves two key decisions. The first

is the choice of predictive covariates to include, and the second is the choice of distribution

to fit. We discuss these decisions in Sections [5.1.1] and [5.1.2] In our preferred specification,

we assume that treatment, N;, is lognormally distributed given covariates, X;:

®Any standard probability model can be used. Since the outcome variable should be between 0 and 1,
probit and logit models are commonly used.



One of our two key assumptions is weak unconfoundedness, or independence of treatment
given covariates, Y;(n) L N|X, where Y;(n) is our outcome variable, PEV registrations. In
other words, we assume that after controlling for a rich set of census tract characteristics,
assignment of HOV lanes is independent of PEV registrationsﬁ

We estimate the parameters of the distribution (/i,62) using maximum likelihood esti-

)

mation. We refer to this as the “first estimation stage.” We then calculate the estimated

GPS, RZ for each census tract i:

R; = ;exp (—M) . (2)

202
3.1.2 Second Stage

In regular propensity score matching the second stage is to estimate the average effect
of treatment on the treated (ATT). Ideally one could calculate the difference in outcome
between two units, one with treatment and one without, which have the identical propensity
score. In practice, two observational units rarely have an identical propensity score, so
researchers employ different matching techniques, such as nearest neighbor matching, kernel
matching, and inverse probability weighting to decide which treated units to compare to
which untreated units.

When treatment is continuous, we must estimate the average conditional expectation of
outcome given treatment and propensity score. Since treatment is not binary we cannot
use a matching method and compare outcomes of treated versus non-treated groups. Each
observation has a different level of treatment. Instead, we model conditional expectation as a
flexible function of treatment and GPS. In regular propensity score matching it is important
to show that the ATT is robust to alternative matching techniques. Analogously, we show
that our conditional expectation of PEV registrations given HOV lane-miles is robust to
alternative second stage functional forms.

If we assumed a quadratic functional form, we would estimate the following equation in

the “second estimation stage:”

6The weak unconfoundedness assumption is not statistically testable. Reverse causality is one potential
violation of this assumption. We cannot rule out the possibility that it is PEV registrations driving HOV
lane construction decisions, however, we find this unlikely to be the case. Another potential violation of this
assumption is correlation between the error terms of the HOV lane variable and PEV registrations, which
would occur if an omitted variable affected both HOV lanes and PEV registrations. We also find this to be
unlikely as the decision to construct HOV lanes is made at the state level and affects many local jurisdictions.
It is unlikely, though not impossible, that a census tract with a local government keen on promoting local
PEV registrations influences HOV lane decisions. Figure[I]in Section [4 shows that PEV registrations appear
to be uncorrelated with HOV lane density.



E[Y;’Nl, Rl] = Oy + OélNi + OéQNiQ —+ 043Ri + 044Rz<2 + Oé5NiRi. (3)

The second key assumption is that the set of covariates is orthogonal to treatment status
given GPS, ie., X L 1{N = n}|r(n,X). That is, we assume that controlling for GPS
removes biases in comparisons across treatment statuses. In Section we find support
for this assumption and discuss possible threats to identification. This assumption, together
with the weak unconfoundedness assumption, implies that treatment is uncounfounded given
GPS. In other words, if our two key assumptions hold, then we remove biases associated with
differences in covariates and can compare treatment groups to estimate the causal effect of
treatment.

Finally we would calculate the estimated average potential outcome at treatment level n

as (using the quadratic example):

M
E[Y(n)] = — ) (4o + din + don® + asi(n, X;) + aui(n, X;)* + asni(n, X;)),  (4)

where 7 is the GPS recalculated for each n using the first estimation stage, &; through as
are the coefficients estimated from the second estimation stage, and M is the total number
of census tracts in California.

We calculate the estimated average potential outcome (PEV registrations) for each level
of treatment n (number of HOV lane-miles) in order to estimate an entire dose-response
curve.[] The dose-response curve shows how a marginal increase in treatment, i.e., an increase
in nearby HOV lanes, impacts PEV registrations. We bootstrap the standard errors and
cluster the standard errors at the county level.

The GPS technique is fairly new and has been used relatively infrequently in the economic
literature. Hirano and Imbens| (2005) apply the methodology to estimate the effect of lottery
prize size on winners’ subsequent labor earnings. Other studies estimate the effect of duration
and quality of training programs (Flores et al., [2012; Kluve et al., 2012; Dammert and
Galdo, 2013). There have also been studies in the medical and healthcare literature using
GPS (Moodie, Pai, and Klein, 2009; Slavov, 2010; |Jiang and Foster, 2013). This paper
is a novel application of GPS with several innovations. First, we use an unusual treatment

variable, miles of HOV lanes within a thirty mile radius of the population centroid of a census

"The dose response curve shows how a marginal increase in HOV lane-miles increases PEV registrations
in an average census tract. Ideally we would weight Equation [4] by total new vehicle registrations in each
census tract. Lacking this data and believing other variables to be poor proxies for new vehicle registrations,
we weight each census tract equally.



tract. Our unit of analysis, the census tract, allows us to explore geographic heterogeneity
by aggregating estimated effects at the metropolitan area level. Second, we use a Lasso
methodology to select first stage control variables, resulting in propensity scores that balance

observables very well across census tracts with differing levels of treatment.

4 Data

PEV and hybrid vehicle registration data were purchased from R.L. Polk & Company
and include PEV and hybrid vehicle registrations by month and by census tract for the state
of California during the period of February 2010 through December 2013. The resolution of
this data is by vehicle model type. Each model is classified as a hybrid vehicle, a battery
electric vehicle (BEV), which has only an electric engine, or a plug-in hybrid electric vehicle
(PHEV), which has both an electric engine and an internal combustion engine. In this
analysis we use cumulative retail PEV registrations as of December 2013 by census tract as
the outcome variable and hybrid vehicle registrations as a control Variable.ﬂﬂ

The treatment variable is the number of miles of HOV lanes (“lane-miles”) within a 30-
mile radius of the population centroid of a census tract as of December 2013[CT] There is
almost no variation in HOV lane miles over time in California during our PEV registration
data sample, thus we are limited to a cross sectional analysis. The data on geographical
locations of HOV lanes in California are collected by Caltrans and made public on the
Caltrans website. Figure [1| shows HOV lane density and PEV registration density in the
county of Los Angeles. Figure shows that HOV lane density is highly correlated with
urban areas. PEV density, as shown in Figure [Ib] appears to be uncorrelated with HOV
lanes.m Instead, greater PEV density is found in more affluent and coastal areas. Some

PEV-dense census tracts have high HOV lane density, and other PEV-dense census tracts

80ur analysis implicitly assumes a uniform distribution of PEV supply at dealerships across California.
While there may be heterogeneity in dealers’ understanding and ability to educate prospective buyers,
availability of vehicles across dealerships is likely uniform across dealers due to their ability to trade vehicles
across dealerships. In other words, if a customer would like to purchase a PEV from a dealership that is out
of stock, the dealership can transfer the PEV from another dealership.

9PEV registrations include both PHEV and BEV registrations. We exclude fleet registrations and
neighborhood electric vehicles, or NEVs, which are not allowed on highways.

10The average length of weekday home to work trips in California is 26 miles (Caltrans, [2013). A 30-mile
radius is large enough to encapsulate most commuters’ daily commutes but small enough to retain variation
across census tracts.

1While density of HOV lane-miles is not a perfect measure of HOV access, it is a good proxy for HOV
lane access. HOV lane-mile density is highly correlated with being in an urban area, as is HOV lane access,
i.e., the distance of a census tract from a highway entrance ramp with an HOV lane. Provision of these
entrance ramps by Caltrans is generally in response to growing population density.

12This supports the first key assumption from Sectionthat assignment of HOV lanes is independent
of PEV registrations.



have low HOV lane density.

Most of the covariates are socio-demographic variables from the U.S. Census Bureau’s 5-
year 2008-2012 American Community Survey (ACS). We also use the share of a voting district
voting “yes” on California Proposition 23 as a measure of its green propensity. California
Proposition 23 was a 2010 ballot measure to suspend AB 32, the “Global Warming Solutions
Act of 2006.” A higher proportion of “yes” votes should correlate to a lower green propensity.
Average gasoline prices in December 2013 by census tract were obtained from Gas Buddy
Organization Inc. Average overnight electricity rates in December 2013 by census tract
were obtained directly from utilities’ rate schedules. Lastly, publicly-available PEV charger
density (Level 1 Chargers, Level 2 Chargers, and DC Fast Chargers within a 5-mile, 20-mile,
and 30-mile radius of the population centroid of each census tract) as of December 2013
were obtained from the U.S. Department of Energy’s Alternative Fuels Data Center. PEV
charger density is a measure of amenability of the built environment to PEV ownership.

Finally, we obtain proxies for congestion from Caltrans. The first variable is number
of traffic bottlenecks in each census tract in 2012, where a bottleneck represents a segment
of heavy congestion during peak morning and/or evening periods. Bottlenecks are a good
predictor of HOV lane-miles in the first stage. The second variable is annual average daily
traffic volume by census tract in 2012, which is the total volume for the year divided by 365
days. Because traffic volumes are monitored in less than half the census tracts in California,
we do not use this variable in the first stage. However, we do check the balance of this
variable across census tracts in Section B.1.4]

Table in the Appendix shows average covariate levels for census tracts in the bottom,
middle, and top third of the HOV lane distribution. The group with the fewest HOV lane-
miles has an average of 10 miles of HOV lanes within a 30-mile radius. The middle group
has an average of 116 miles, and the top group has an average of 287 miles[™| Census tracts
with more HOV lane-miles tend to be more urban, with greater population density, have a
lower percent of “yes” votes on Proposition 23, higher gas prices, higher median home values,
and more workers with medium to long commutes by automobile. Census tracts with more
HOV lane-miles also have less agricultural industry, which is likely because urban areas tend
to have more HOV lanes than rural areas. Census tracts that have more HOV lane-miles
have more households without heat, which may be correlated with coastal locations. Areas
with more HOV lane-miles have more racial diversity, also a likely proxy for urban areas.
Employment, income, sex, and age do not appear to be substantially different across the

groups.

13Note that one mile of six-lane highway with two HOV lanes in both directions would count as 4 miles
of HOV lanes.
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Figure 1: HOV Lane and PEV Registration Density in Los Angeles County

5 Results

5.1 First Stage

The goal of the first stage is not to establish a causal relationship between predictive co-
variates and treatments. Rather, the goal is to estimate propensity scores that best control
for observed differences in treatment groups. The GPS is the probability distribution func-
tion (or probability mass function) evaluated at the level of treatment using the predicted
distributional parameters. Thus the GPS is a measure of the probability that a unit receives
its level of treatment, given its characteristics. The first key decision to estimate GPS is
the choice of predictive covariates to include, and the second is the choice of distribution
to fit. We use various statistical measures to guide these decisions. After estimating GPS,
we perform two checks that help inform which measure of GPS to use in the second stage.
The first is common support, where we ensure that there is overlap in the covariate distribu-
tions between units with different levels of treatment. The second is balance of covariates,
which is a measure of how well controlling for GPS eliminates observable differences between

treatment groups.

5.1.1 Covariate Selection

We cannot include all of the nearly 200 covariates due to power and collinearity issues.
In such cases researchers typically select covariates according to economic intuition. As a

robustness check, we select an“intuitive” set of covariates. For our main specification, we

11



use a Least Absolute Shrinkage and Selection Operator (Lasso) method, a more robust and
systematic method of covariate selection. Table [A.2] in the Appendix shows the covariate
sets as selected by Lasso and intuition.

Lasso is a model selection procedure that solves the ordinary least square objective func-
tion with a penalty for adding variables with small coefficients. Specifically, we use the
Lasso procedure developed by Belloni et al.| (2012) in the context of instrumental variables
for estimating the first stage regression of an endogenous variable on instruments. This is a
similar context as ours, where we are selecting which variables to include in our first stage

estimation of an endogenous variable, HOV lane-miles.

5.1.2 Distributional Assumption

Figure[2] shows the distribution of HOV lane-miles across census tracts. Figure 2] suggests
that a lognormal, Poisson, or negative binomial distribution may fit the data well. Table
in the Appendix shows the results of a lognormal, Poisson, and negative binomial regression
of HOV lane-miles on each of the two sets of covariates. The lognormal specification has the
greatest log-likelihood and the lowest Akaike and Bayesian information criteria (AIC and
BIC), suggesting it is the best fit, followed by the negative binomial specification. Since the
negative binomial specification leads to computational difﬁcultiesﬂ we use the lognormal

distribution as our preferred specification and the Poisson distribution as a robustness check.

Figure 2: HOV Lane Frequency
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14Ty calculate the GPS we must calculate the probability mass function of the negative binomial distribu-
tion, which involves taking a factorial of N, the number of HOV lane-miles in a census tract. In many cases N
is greater than 150, up to 366. Standard software cannot evaluate the factorial of such large numbers. This
problem can be mitigated by setting treatment equal to N = %, however, N must be truncated and input
into the probability mass function as an integer, which results in a significant loss in variation of treatment.

12



5.1.3 Common Support

Common support is necessary for propensity score matching to ensure sufficiency of com-
parison groups. Common support requires that there is overlap in the covariate distributions
between the treated and untreated populations. For the binary case, one typically compares
the propensity score distribution of the treated group with that of the non-treated group and

removes observations from either distribution without overlap. For continuous treatment,

we can test for common support following the approach of [Flores et al.| (2012)).

We divide observations into three groups of approximately equal size according to treat-
ment level. We evaluate the GPS for all observations at the median treatment of the first
group and compare the distribution of this GPS for the first group to the distributions of
the other groups. We then evaluate the GPS at the median treatment levels of the second
and third groups and repeat the analogous comparison of distributions.

For each covariate set-distribution pair except the Poisson distribution (which we do not
use for the second stage) using the Lasso-selected covariates, we find sufficient overlap in
the covariate distributions. Figure |3 shows the covariate overlap using the Lasso-selected
covariates and a lognormal distribution. Typically, researchers remove any observations that
lack common support before moving on to the second stage. Since we have common support
across all treatment levels, we do not trim the data as we have confirmed that each census
tract can be compared to another census tract with a similar GPS but different level of

treatment.

Figure 3: Common Support
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5.1.4 Balancing of Covariates

We also test for balancing of the covariates, i.e., that controlling for GPS sufficiently
removes biases in covariates. In the binary case we would simply compare the covariate

means between the treated and untreated groups before and after matching. In our contin-

uous treatment case, we follow Hirano and Imbens (2005)) and use a “blocking on the score”

approach. We divide the sample into three intervals according to treatment. Within each
interval, we compute the GPS for all observations at the median of the treatment interval.

We divide each treatment interval into thirty blocks by GPS evaluated at the median of

13



the treatment interval. Then we compare the means of a covariate between a given block
and observations from different treatment intervals with similar GPS. Lastly we calculate a
weighted average over the thirty blocks of each treatment interval and use a t-test to deter-
mine if the difference in covariate means is significant. We repeat this for every treatment
interval and for every covariate. If GPS perfectly balances the covariates, the differences in
covariate means should not be statistically different from zero.

The results of the blocking on the score methodology for testing the balancing property
of the GPS are shown in Table Note that we perform the balancing test for all 200
variables in our data (i.e., all observables), not only the covariates used in the first stage.
Before adjusting for GPS, the t-statistics for less than 16% of variables fail to reject the null
hypothesis of equality of means at the 5% significance level. In other words, before adjusting
for the GPS, census tracts with different levels of treatment exhibit different characteristics.
After adjusting for GPS, however, the t-statistics for the majority of variables fail to reject
the null hypothesis at the 5% significance level. Using the Lasso-selected covariates and
a lognormal distribution of treatment results in the best covariate balance. We consider
this our preferred first stage specification and use it in the second stage estimation. In this
specification, after controlling for GPS, 95% of approximately 200 observable characteristics
are statistically indistinguishable across census tracts with different levels of treatmentE
This is the same level of balance achieved by Hirano and Imbens (2005). Table in the
Appendix shows the detailed results of the balancing tests for the preferred specification.

Table 1: Balancing Tests of Alternative Specifications

Covariates Distribution Unadjusted! Adjusted?
Lasso lognormal 15.8% 94.8%
Intuitive lognormal 15.8% 93.3%
Lasso Poisson 13.8% 93.1%
Intuitive Poisson 4.6% 86.5%

1 Percent of covariates with t-statistics that fail to reject the null hypothesis of
equality of means at the 5% significance level before adjusting for GPS
2 Percent of covariates with t-statistics that fail to reject the null hypothesis of

equality of means at the 5% significance level after adjusting for GPS

15The remaining 5% of variables are not necessarily unbalanced. Since no two census tracts have an
identical GPS, we compare variable means between census tracts with different levels of treatment and
similar GPS. Remaining differences in variable means could result from the same source as differences in
GPS.
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Threats to Identification

As mentioned in Section [3] when using the GPS methodology, there are two assumptions
that must hold in order to causally identify treatment effects.

The first assumption is that after controlling for a rich set of census tract characteristics,
assignment of HOV lanes is independent of PEV registrations["| The second assumption
is that the set of covariates is orthogonal to treatment status given GPS; i.e., controlling
for GPS removes biases in comparisons across treatment statuses. The GPS methodology
essentially identifies the effect of treatment (HOV lane-miles) on outcome (PEV registrations)
conditional on treatment probability (GPS). Note that unobservables that influence PEV
registrations, such as green preferences or early adoption proclivity, are not a threat to
identification in this framework except to the extent that they covary with treatment status.

Section[5.1.4]shows that observable characteristics of different treatment groups are nearly
indistinguishable after controlling for GPS, which supports the second assumption. However,
we cannot test that controlling for GPS removes differences in unobservable characteristics
that may influence treatment status (HOV lane-miles). Unobservables that may covary with
treatment include local PEV incentives and vehicle preferences.

Most PEV incentives in California are state-wide or federal, including rebates and tax
credits. However, there are various local incentives including preferential parking and public
charging stations that may or may not be subsidized. There does not appear to be a con-
sistent data source for these local incentives. However, we do control for publicly available
charging stations, which is likely a good proxy for local incentives. Additionally, we control
for hybrid vehicle registrations, which may covary with local incentives. Note that adjust-
ing for GPS removes observable differences in hybrid registrations and publicly available
charging stations, as shown in Table in the Appendix.

Vehicle preferences may covary with treatment if, for example, more urban areas (with
greater HOV lane access) prefer smaller vehicles, since most PEV models are small sedans
and hatchbacks. If we had vehicle registration data for internal combustion engine vehi-
cles we could control for how vehicle preferences vary across census tracts. Hybrid vehicle

registrations, which we control for, may also be a proxy for vehicle preferences.

5.2 Second Stage

When treatment is continuous, we must estimate the average conditional expectation of
outcome given treatment and propensity score. Since treatment is not binary we cannot

use a matching method and compare outcomes of treated versus non-treated groups. Each

16 As mentioned in Section we believe this assumption is not an issue as the decision to construct
HOV lanes is made at the state level and affects many local jurisdictions.
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observation has a different level of treatment. Instead, we model conditional expectation as a
flexible function of treatment and propensity score. In regular propensity score matching it is
important to show that the ATT is robust to alternative matching techniques. Analogously,
we show that our conditional expectation of PEV registrations given HOV lane-miles is
robust to alternative second stage functional forms.

Most previous studies have assumed a low order polynomial. Lower order polynomials
are limited in their curvature, while higher order polynomials may fit poorly at extreme
covariate values. Fractional polynomials, which allow for both integer and non-integer value
polynomials as well as natural logs, are more flexible than standard polynomials (Royston
and Altman, (1994). We utilize an algorithm by |[Royston and Ambler| (1998) for model
selection, which selects the multivariable fractional polynomial (MFP) that best predicts the
outcome from the right hand side variables based on goodness of fit statistical tests. We also
fit a quadratic and cubic specification. Table [2| shows the results of the second estimation
stage, regression of PEV registrations on the specified function of treatment and GPS. The
cubic specification has the best model fit, with the lowest AIC and BIC, therefore it is our
preferred specification. Table in the Appendix shows the second stage estimation results
by vehicle technology.

Comparison with OLS

Table in the Appendix shows the results from an OLS regression of the outcome
variable, PEV registrations, on the two sets of control variables. In both specifications,
the coefficient on HOV lane-miles is close to zero. Using the larger set of Lasso-selected
covariates, this coefficient is not statistically significant, and using the smaller set of intuition-
selected covariates, this coefficient is statistically significant at the 10% level. This suggests
that a one-mile increase in HOV lanes has, if anything, a negative effect on PEV registrations.
Not only is this approach less flexible than the GPS approach, but it is also more susceptible
to omitted variable bias. Unlike the GPS approach, controlling for a set of covariates does
not necessarily lead to observables being balanced across treatment groups.

Falsification Test

As a robustness check for estimating causal effect of a treatment, Imbens and Wooldridge
(2009) recommend a falsification test. The researcher can estimate a “pseudo” average treat-
ment effect by assuming one of the control groups was treated and testing if the pseudo
average treatment effect is zero as expected. In our context, this is analogous to randomly
assigning census tracts a different level of treatment and ensuring that we find no effect of
this falsified treatment.

PEV sales in a census tract should not be a function of HOV lane-miles in a different cen-

sus tract more than 30 miles away (i.e., without overlapping HOV lane-miles). To implement
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Table 2: Second Stage Results

(1) (2) (3)
Quadratic Cubic MFP
N 0.179%*%  0.365%**
(0.011) (0.036)
N2 -0.0003%F*  -0.001%**
(2e-05) (0.0001)
N3 8e-07H¥*
(2e-07)
InGPS -0.214%F 0, 137F*
(0.039) (0.048)
InGPS? 0.010%*  -0.036%**
(0.004) (0.009)
InGPS3 -0.0006%**
(0.0002)
N*InGPS 0.008%**  (.032%**
(0.001) (0.007)
N2¥InGPS ~6e-05¥F*
(1e-05)
N*InGPS? 0.0008***
(0.0002)
N 31.030%+*
(2.116)
N, 5,766+
(0.397)
InGPS -0.190%%*
(0.058)
N % InGPS, ~16.650%**
(4.206)
N % InGPS, 4.590%%*
(0.713)
Constant 3.276%FF  3.120%* 13.041
(0.205) (0.288) (0.307)
Observations 7,772 7,772 7,772
R? 0.098 0.105 0.102
Log Likelihood ~ -31,362 -31,330 -31,344
AIC 62,736 62,679 62,700
BIC 62,778 62,749 62,741

where N1 = (Trelllfdglent) ~13

N _ (Treatment\?2 _
Ny = (Fregggent)” — 1.8

InGPS = In(GPS) +5.3

—
Treat txln(GPS)+4751
N x l’l”LGPSl _ Treatmen *1&)(0 )+ 38

N */Z-T;G/PSQ _ (TTeatment*ln(GPS)-Hl?Sl)2 _ 142

1000

Standard errors in parentheses are clustered at the county level.
K p<0.01, ** p<0.05, * p<0.1
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Table 3: Second Stage Pseudo Outcome Results

PEV Registrations

N -0.008
(0.010)
N2 7e-05
(9e-05)
N3 -1e-07
(2e-07)
InGPS -0.934%**
(0.046)
InGPS? -0.078%**
(0.008)
InGPS? -0.001***
(0.0002)
N*InGPS -0.0004
(0.0007)
N2*¥InGPS -1le-07
(2e-06)
N*InGPS? -1e-05
(2e-05)
Constant 6.351%**
(0.295)
Observations 7,772
R? 0.037
Log Likelihood -31,615
AIC 63,251
BIC 63,321

Robust standard errors in parentheses
K <0.01, ** p<0.05, * p<0.1

such a falsification test, we randomly assign each census tract the treatment, or number of
HOV lane-miles, of a census tract from another county. We re-estimate the second stage
using actual outcome (PEV registrations), actual GPS, and the assigned falsified level of
treatment. Table [3| shows the results. None of the coefficients on treatment variables (N,
N2, N3, and interactions with GPS) are statistically significant or different from zero. We
conclude the pseudo average treatment effect is zero, as we would expect if our methodology
successfully identifies causal effects of HOV lane-miles on PEV registrations.

HOV Lane Quality

In our main specification we estimate the average potential outcome for additional HOV
lane-miles, holding all else constant. Impacts of the HOV lane policy likely depend on

potential travel time savings from utilizing HOV lanes. Travel time savings depend not only
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on the quantity of HOV lanes a driver has access to, but also the quality of those lanes, i.e.,
congestion of the HOV lanes relative to regular lanes. With a measure of HOV lane quality,
we could construct a treatment variable that is a function of both quantity and quality of
HOV lanes that would enable us to better estimate heterogeneity of impacts of the HOV
lane policy across locations. An ideal measure of HOV lane quality would be predicted travel
time savings for each HOV lane-mile. This would require data on traffic flows in HOV lanes
and regular lanes throughout the day, a measure of direction of traffic at these locations
during peak travel times, as well as an idea of net directional commuting flows across census
tracts for the state of California. Lacking this data, estimating impacts of the HOV lane
policy as a function of both quantity and quality of HOV lanes is outside the scope of this
paper.

As shown in Table in the Appendix, after controlling for GPS, we cannot reject
the null hypothesis that the number of bottlenecks and annual average daily traffic volume,
our measures of congestion, are equal across census tracts with differing numbers of HOV
lane-miles. Therefore marginal impacts of HOV lane-miles estimated in the second stage are

average impacts after controlling for congestion.

5.3 Dose-Response Curves

We construct a dose-response curve by recalculating the GPS at each level of potential
treatment and using the second stage results to predict the average potential outcome, as
explained in Section [3.1.2] Figure [] shows the resulting dose-response curves. The dose-
response curves isolate the effects of changes in HOV lane-miles on PEV registrations and
are effectively a series of marginal effects. This allows us to predict marginal changes in PEV
registrations as a function of marginal changes in HOV lane-miles. While the shape of the
dose-response curves contains useful information, such as exhibition of decreasing marginal
returns, we must use caution in our extrapolations from the dose-response CUI‘VGSE]

Figure [Ab], our preferred specification, suggests that nearby HOV lane-miles have a sta-
tistically significant impact on PEV registrations, with the first six HOV lane-miles within
a 30-mile radius resulting in one additional cumulative PEV registration and the next six
miles resulting in a second additional PEV registration. As the number of HOV lane-miles
increases further, the slope gradually decreases, eventually flattening out around 100 HOV

lane-miles at just over 12 cumulative PEV registrations, suggesting that 100 or more HOV

I"The intercept of the dose-response curve is not estimated separately for each census tract but rather
represents the average number of PEV registrations to expect in a census tract with average covariate values
and no access to HOV lanes. Therefore, our analysis does not allow us to compare PEV registrations across
different census tracts in the absence of an HOV lane policy.
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lane-miles results in a total of more than 10 additional PEV registrations. These are substan-
tial effects, especially considering that census tracts are generally only a few square miles in
area, meaning that an HOV lane-mile could be in the 30-mile radius of many census tracts.
To put this in perspective, the mean and median number of PEV registrations in this time
period was 8.5 and 4, respectively. Figures 4a] and [4c| show that the dose-response curve is
robust to alternative second stage specifications. The quadratic and cubic specifications also
flatten out around 100 miles, though at a lower level, suggesting a somewhat smaller, though
still significant, causal impact of HOV lane-miles on PEV registrations.

Figures [5b| and [5c show the separate dose-response curves for PHEVs and BEVs, respec-
tively, with the PEV dose-response curve for comparison. These two dose-response curves
have very similar intercepts and and similar shapes, both flattening out around 100 miles.
This suggests that the impact of the HOV lane policy is similar across vehicle technologies,
and one technology type or model does not appear to drive the main result in Figure [bal

Although the dose-response curve is a series of marginal effects, we can cautiously inter-
pret the intercept as the number of PEVs that would have been purchased in the absence of
the HOV policy for the average census tract with average covariate values. In our sample,
66,728 PEVs were purchased between 2010 and 2013. For each census tract, we use the sec-
ond stage estimation results to predict PEV registrations given GPS, assuming the number
of HOV lane-miles is zero. Integrating across census tracts, we predict 19,374 PEV regis-
trations in the absence of the HOV policy, with a standard error of 14,995. The confidence
interval is large due to the accumulation of standard errors from the marginal effects. Nev-
ertheless, with upper bound of 49,363, these predictions suggest that with 95% confidence,
at least 26% of PEV registrations in California between 2010-2013 were a result of the HOV

lane policy.

5.4 Simulations

The second stage estimation results in Table [2| show that more HOV lane-miles (that is,
a higher level of treatment) are associated with higher PEV registrations, with the negative
quadratic term suggesting decreasing marginal returns to treatment. Table [4 shows average
HOV lane-miles, PEV registrations, and selected socio-demographics for California’s largest

metropolitan areas.
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Figure 4: Dose-Response Curves by Second Stage Specification
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Figure 5: Dose-Response Curves by Technology (Cubic Specification)
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Table 4: California Metropolitan Area Characteristics'

San Diego Los Angeles San Francisco Sacramento

HOV Lane-Miles (30-mile radius) 9.7 260.1 98.5 38.5
Cumulative PEV Registrations 9.0 7.8 8.1 4.1
Cumulative BEV Registrations 5.2 3.1 4.8 2.2
Cumulative PHEV Registrations 3.8 4.7 3.3 2.0
Cumulative Hybrid Registrations 39.8 35.7 42.4 20.7
Population Density (per sq. mile) 7,138 13,194 28,818 5,187
Number of Bottlenecks 0.6 0.9 0.2 0.2
Level 2 Chargers (20-mile Radius) 355.9 573.8 490.7 258.5
Prop 23 Vote, % of District Voting "Yes" 43% 32% 18% 37%
Avg Gas Price ($) 3.6 3.6 3.7 3.4
Race: White (%) 73% 53% 52% 63%
Industry: Agriculture (%) 0.5% 0.3% 0.1% 0.4%
Industry: Public (%) 3.1% 1.9% 2.3% 6.3%
Median House Value ($10,000s) 42.2 44.3 72.2 24.8
Median Rent ($1,000s) 14 1.3 1.5 1.1
Commute: Public Transport (%) 3% 8% 32% 3%
Commute: 10-19 minutes (%) 30% 24% 21% 29%
Commute: 60-89 minutes (%) 1% 8% 8% 4%
Education: College or Some College (%) 52% 44% 52% 55%
Single House (%) 68% 63% 40% 78%

TAll characteristics shown are the mean across census tracts in each metropolitan area. PEV Registrations,
PHEV Registrations, and BEV Registrations are cumulative between 2010 and 2013. HOV Miles, Average
Gas Price, and Publicly Available Charging Stations are all as of December 2013.

Los Angeles has the highest average number of HOV lane-miles within a 30-mile radius
of a census tract at 260 miles, followed by San Francisco (98), Sacramento (38), and San
Diego (10). The level of actual treatment, or HOV lane-miles, determines where a census
tract is located on the dose-response curve and which marginal effects are relevant. Census
tracts with fewer than 100 HOV lane-miles will be located on the positively-sloped portion
of the dose-response curve, while those with more than 100 HOV lane-miles will be located
on the flat part of the dose-response curve. Therefore, we would expect areas with fewer
HOV lane-miles, such as San Diego and Sacramento, to be responsive to marginal changes
in HOV lane-miles, and we would expect areas with very many HOV lane-miles, such as Los
Angeles, to be relatively unresponsive to marginal changes in HOV lane-miles.

We use our results to simulate how an increase or decrease in HOV lane-miles would
affect PEV registrations in California’s largest cities. For each census tract, we increase

or decrease the number of HOV lane-miles by a given percent and predict the number of
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Table 5: Simulation Results

HOV Lanes, PEV Registrations (Feb 2010-Dec 2013), % of Actual

% of Actual California San Diego Los Angeles San Francisco Sacramento
70% 94.4% 87.4% 98.4% 82.3% 81.5%
80% 96.6% 91.6% 99.1% 87.9% 87.9%
90% 98.4% 95.8% 99.6% 96.7% 94.1%
100% 100.0% 100.0% 100.0% 100.0% 100.0%
110% 101.3% 104.1% 100.3% 102.6% 105.7%
120% 102.3% 108.3% 100.5% 102.6% 111.1%
130% 103.1% 112.3% 100.7% 104.5% 116.3%
HOV Lanes, PEV Registrations (Feb 2010-Dec 2013)

% of Actual California San Diego Los Angeles San Francisco Sacramento
70% 63,009 4,881 17,656 1,282 1,032
80% 64,464 5,118 17,786 1,369 1,112
90% 65,691 5,353 17,878 1,507 1,190
100% 66,728 5,587 17,946 1,558 1,265
110% 67,584 5,819 17,997 1,598 1,337
120% 68,253 6,049 18,036 1,598 1,405
130% 68,778 6,277 18,068 1,628 1,471

PEV registrations using the second stage estimation results. We are then able to integrate
PEV registrations over all census tracts in a given city. Table [5| shows how cumulative PEV
registrations are predicted to change, both in percentage terms and in terms of number of
vehicles, if the number of miles of HOV lane-miles in a city increased or decreased [

Los Angeles seems to be at the flat part of the dose-response curve, where HOV lane
density is already high enough in most census tracts that additional HOV lane-miles do not
further impact PEV registrations. Los Angeles has the most HOV lane-miles out of the four
cities. This suggests the Los Angeles area is relatively saturated in HOV lanes, such that
all consumers will be less responsive to further increases in HOV lane access. Notice that
if there were 30% fewer HOV lane-miles in Los Angeles, it would still have more than any
other city in California. Importantly, this finding does not mean that California’s HOV lane
policy has not induced PEV registrations in Los Angeles. Indeed, HOV lane access may have
motivated a substantial number of PEV registrations in the area, but our analysis identifies
only the marginal effects of changes in HOV lane access.

San Francisco and Sacramento PEV registrations are predicted to be more sensitive to
changes in HOV lane density. A 10% decrease (increase) in HOV lane-miles is associated with

a 3.3% decrease (2.6% increase) in PEV registrations in San Francisco and a 5.9% decrease

18The cumulative PEV registrations at 100% of current HOV lane-miles (i.e., no change) have been
normalized to actual registrations for each city. Our empirical model identifies the incremental effect of
HOV lane-miles on PEV registrations but does not estimate the intercept for each census tract.
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(5.7% increase) in Sacramento. That PEV registrations are lower in these cities than San
Diego and Los Angeles and also more sensitive to HOV lane density suggests that a larger
proportion of marginal PEV registrations in San Francisco and Sacramento are motivated
by drivers who are responsive to marginal increases in access to HOV lanes.

San Diego has more PEV registrations and the lowest number of HOV lane-miles out of all
four metropolitan areas. That San Diego PEV registrations are so high suggests that factors
other than HOV lane access are motivating San Diego drivers to adopt PEVs. Nevertheless,
our simulations suggest PEV registrations in San Diego are still quite responsive to changes
in HOV lane density. A 10% decrease (increase) in HOV lane-miles is associated with a 4.2%

decrease (4.1% increase) in PEV registrations.

6 Caveats and Conclusion

We have developed an approach that identifies both state-wide average marginal effects of
HOV lane access on PEV registrations and geographic-specific estimates that accommodate
local variation on policy treatment. Our estimated treatment effects are conditioned on
several factors. First, our estimated marginal effects are for a new product market and a
policy that has been in place for four years. Therefore, we are measuring a treatment effect
over a considerable period of time for early and middle-market adopters, who may be less
responsive to the time and cost savings associated with increased HOV lane access than
will be future PEV adopters. Our approach, when combined with a future discrete policy
change, may allow future researchers to identify per year effects rather than cumulative
effects. Second, the impacts of this policy may depend upon both other policies and market
conditions that affect the total costs of owning PEVs. Changes in PEV market prices relative
to conventional vehicle, gasoline and electricity prices, as well as vehicle purchase incentives
and refueling infrastructure subsidies could affect our findings. Lastly, as congestion changes
in existing HOV lanes, so too will drivers’ willingness to pay to access these lanes.

We find evidence that California’s policy to allow PEVs free single-occupant access to
HOV lanes led to an increase in PEV registrations during 2010-2013. Although we estimate
the impact of this policy on PEV registrations, our analysis offers little guidance in terms of
the net effect of the HOV lane policy on welfare. The net effect of the on welfare depends
on whether the environmental benefits from PEV adoption (which Holland et al.| (2015
estimate to be $3,025 annually) outweigh any increase in congestion costs (which Bento et
al.| (2014)) estimate to be between $0 and $4,500 annually). To perform such an analysis at
a state-wide level would require more detailed data, particularly on traffic volumes on major

highways throughout the state.
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Our analysis does, however, shed light on relative policy effectiveness. During the time
period under analysis, the state of California also offered rebates of $1,500 and $2,500 for
PHEV and BEV purchases, respectively. |DeShazo, Sheldon, and Carson (2015) find that
most of these rebates were non-marginal in the sense that they were given to customers
who would have purchased a PEV regardless of the rebate. They estimate the cost of the
rebate policy per induced PEV purchase to be $30,000. We estimate roughly one quarter of
California PEV registrations during 2010-2013 were a result of the HOV lane policy. The
capital costs of this policy are approximately zero since the policy allowed PEVs to access
HOV lanes that already existed, and congestion costs per additional PEV are likely well
below $30,000. Therefore, we find California’s PEV HOV lane policy to be considerably

more cost effective than its rebate program.
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A Appendix

Table A.1: Descriptive Statistics

HOV Lanes (30-mile radius)

Covariate Bottom Third Middle Third Top Third
HOV Lanes within 30-mile Radius 10 116 287
Cumulative PEV Registrations 4 14

Cumulative PHEV Registrations

Cumulative BEV Registrations 2 7

Cumulative Hybrid Registrations 25 42 36
Population 4,824 4,642 4,466
Commuters 1,974 2,117 2,015
Area (Land, mi?) 48 4 1
Population Density (per mi?) 4,306 8,660 12,660
Prop 23 “Yes” Vote 44% 33% 35%
Avg Gas Price ($) 3.54 3.60 3.63
Avg Electric Price (cents/kWh) 10.5 11.3 10.3
Industry: Construction 4% 4% 3%
Industry: Transport 2% 3% 3%
Industry: Manufacturing 4% 6% 7%
Industry: Agriculture 3% 0% 0%
Industry: Education 11% 13% 12%
Industry: Wholesale 2% 2% 2%
Industry: Management 6% 9% ™%
Employed 53% 59% 58%
Unemployed 8% ™% ™%
Has Mortgage 1% 7% 76%
Has 2nd Mortgage 17% 21% 18%
Income: $10-$15k 6% 4% 6%
Income: $20-$25k 6% 4% 5%
Income: $25-$30k 5% 4% 5%
Income: $30-$35k 5% 4% 5%
Income: $35-$40k 5% 4% 5%
Income: $45-$50k 4% 3% 4%
Income: $50-$60k 8% ™% 8%
Income: $125-$150k 5% % 5%
Median Rent ($1,000s) 1.2 1.5 1.3

Continued on next page
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Table A.1 — continued from previous page

HOV Lanes (30-mile radius)

Covariate Bottom Third Middle Third Top Third
Median House Value ($10,000s) 29.9 50.0 44.8
Poverty Rate 16% 11% 15%
Heat: Solar 0.1% 0.1% 0.1%
Heat: Oil 1% 0% 0%
Heat: Electric 26% 23% 23%
Heat: None 2% 2% 6%
Race: Black 5% 7% 7%
Race: White 73% 60% 54%
Race: Asian 7% 18% 15%
Single, Attached House 6% 9% 8%
Single House 84% 4% 63%
Mobile House 8% 3% 2%
Houseunits: 3-4 6% 6% 7%
Houseunits: 10-19 4% 5% 8%
House Value: Under $20k 3% 1% 1%
House Value: $100-$150k 10% 5% 3%
House Value: $150-$300k 33% 19% 21%
House Value: Over $1,000k 4% 11% 7%
Male: 25-34 7% 7% 8%
Male: 45-54 7% ™% ™%
Male: 55-64 6% 6% 5%
Male: 75-84 2% 2% 2%
Female: 35-44 6% 7% 7%
Female: Over 85 1% 1% 1%
Age: 15-24 15% 14% 15%
Age: 35-44 13% 14% 15%
Age: 45-54 14% 15% 14%
Age: 65-74 ™% ™% 6%
Foreign: Naturalized 8% 14% 16%
Foreign, Entry: 1990-1999 24% 25% 25%
Moved, High School or Less 40% 33% 44%
Moved, College 47% 48% 43%
Moved from Other State 11% 5% 5%
Commute: Walk 3% 3% 3%
Commute: Public Transport 2% 8% 7%

Continued on next page
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Table A.1 — continued from previous page

HOV Lanes (30-mile radius)

Covariate Bottom Third Middle Third Top Third
Commute: Motorcycle 0% 0% 0%
Commute by Auto: Under 15min 28% 19% 17%
Commute by Auto: 30-60min 21% 26% 30%
Commute by Auto: Over 60min 7% 9% 8%
Leave Home 7-8am 26% 25% 24%
Leave Home 9-10am 6% 9% 9%
Leave Home 10am-noon 5% 5% 5%
Education: High School 23% 19% 21%
Education: Some College 34% 28% 27%
Education: College 49% 51% 45%
Education: MA 6% 10% 6%
Education: Professional Degree 2% 3% 2%
Level 1 Chargers (5-mile Radius) 2 17 8
Level 2 Chargers (5-mile Radius) 21 54 57
DC Chargers (5-mile Radius) 0.2 1.0 0.7
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Table A.4: Second Stage Results by Vehicle Technology

(1) (2) (3)
PEV BEV PHEV
N 0.365%** 0.202%** 0.164%**
(0.036) (0.022) (0.016)
N2 -0.001*%**  -0.0007*** -0.0005***
(0.0001) (7e-05) (6¢-05)
N3 8e-(7H** Ge-07*** 2e-07**
(2e-07) (1e-07) (1e-07)
InGPS -0.137%** -0.057 -0.081#**
(0.048) (0.038) (0.017)
InGPS? -0.036%**  -0.024***  -0.012%**
(0.009) (0.006) (0.004)
InGPS3 -0.0006***  -0.0004***  -0.0002**
(0.0002) (0.0001) (0.0001)
N*InGPS 0.032%** 0.017%** 0.014%**
(0.007) (0.004) (0.003)
N2*InGPS -6e-05%**  _3e-05%F*  _3e-05*H*
(1e-05) (7e-06) (6¢-06)
N*InGPS? 0.0008***  0.0005***  0.0003***
(0.0002) (0.0001) (9¢-05)
Constant 3.120%** 1.569%** 1.5517%%*
(0.288) (0.228) (0.102)
Observations 7,772 7,772 7,772
R? 0.105 0.074 0.113

Robust standard errors in parentheses

*** p<0.01, ** p<0.05, * p<0.1
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Table A.5: OLS Results

Lasso-Selected

Intuition-Selected

HOV Lanes within 30-mile Radius

Cumulative Hybrid Registrations

Level 2 Chargers (5-mile Radius)

Level 1 Chargers (20-mile Radius)

Level 2 Chargers (20-mile Radius)

DC Chargers (20-mile Radius)

Prop 23 Vote, % of District Voting "Yes"

Avg Gas Price ($)

Population Density (per sq. mile)

Number of bottlenecks

Race: White (%)

Race: Hawaiian (%)

Race: Other (%)

Race: Two or More (%)

Industry:

Industry:

Industry:

Industry:

Industry:

Industry:

Agriculture (%)
Construction (%)
Manufacturing (%)
Wholesale (%)
Transport (%)

Information (%)

0.001
(-0.004)
0.129%*
(-0.051)

-0.007
(-0.007)
-0.014
(-0.010)
0.006*+*
(-0.002)
0.156*
(-0.079)
-2.924
(-3.683)
-1.721
(-2.412)
~9e-05***
(-0.00002)
0.159%
(-0.081)
-1.354
(-2.071)

-24.250%%%

(-7.085)
-2.575
(-1.847)
-0.048
(-3.112)
-2.427
(-5.351)
~12.400%*
(-5.241)
37.050%*
(-15.570)
3.294
(-9.812)
-28.150%*
(-10.620)
-18.290
(-12.670)

-0.011*
(-0.006)

0.009
(-0.008)

-2.729
(-4.501)
0.345
(-4.937)
-0.0002%+*
(-0.00007)
0.291
(-0.272)

~16.170%*
(-7.962)

Continued on next page
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Table A.5 — continued from previous page

Lasso-Selected

Intuition-Selected

Industry: Profession

al (%)

Industry: Public (%)

Households: With interest, dividends, or net rental income (%)

Houseunits: 2 (%)

Houseunits: 3-4 (%)

Primary heat source

Primary heat source

Primary heat source

Primary heat source

Primary heat source

House Value: $50-$1

: Electric (%)

. Coal (%)
: Solar (%)
: Other (%)
- None (%)

00k (%)

House Value: $100-$150k (%)

House Value: $150-$300k (%)

House Value: $300-$

House Value: $500-$

500k (%)

750k (%)

Commute: Public Transport (%)

Commute: 10-19 minutes (%)

Commute: 20-29 minutes (%)

Commute: 30-39 minutes (%)

Commute: 40-59 minutes (%)

Commute: 60-89 minutes (%)

13.880%
(-7.465)
-25.540%*
(-10.790)
16.910%**
(-5.054)
-4.626
(-6.177)
-4.505%*
(-2.249)
-0.836
(-1.356)
-2.606
(-3.317)
-4.753
(-25.000)
-18.100%+*
(-6.542)
5721 %K
(-1.502)
-15.480%%*
(-2.640)
-10.400%+*
(-1.633)
-15.500%%*
(-2.394)
-17.740%%
(-2.452)
-18.630%+*
(-3.028)
-7.863*
(-4.322)
-3.254
(-2.684)
-4.620
(-3.390)
3.130
(-4.454)
5.967*
(-3.396)
4.527

-11.250
(-9.662)

Continued on next page
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Table A.5 — continued from previous page

Lasso-Selected Intuition-Selected

(-4.109)
Native-born (%) -3.737
(-3.781)
Foreign Born: Naturalized Citizen (%) -10.870**
(-5.296)
Year Of Entry For The Foreign-Born Population: 2000 to 2009 (%) -2.580
(-1.819)
Year Of Entry For The Foreign-Born Population: Before 1990 (%) -2.810*
(-1.631)
Commute by Auto, Carpool: Income $35-$75k (%) -0.013%**
(-0.004)
Commute by Auto, Carpool: Income >$75k (%) 0.038***
(-0.010)
Commute by Auto: 15-30min (%) 0.003 0.002**
(-0.002) (-0.001)
Leave Home 7-8am (%) 0.002*
(-0.001)
Median House Value ($10,000s) 0.348%**
(-0.049)
Median Rent ($1,000s) 3.942%%*
(-0.644)
Income: $10-$30k (%) 5.041
(-3.318)
Income: $100-$200k (%) -1.675
(-2.861)
Education: College or Some College (%) -5.753
(-4.319)
Commute by Auto: 30-60min (%) 0.009%**
(-0.002)
Single House (%) -1.431%**
(-0.407)
Constant 24.840*** -10.700
(-8.723) (-19.620)
Observations 7,836 7,902
R-squared 0.700 0.451

Standard errors in parentheses are clustered at the county level.
*¥** p<0.01, ** p<0.05, * p<0.1
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