CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Cimate Migration and Immobility

Thanks for joining us! The session will begin shortly.

UCLA

Luskin Center for Innovation

Thank you to our event collaborators

Adrienne **Arsht-Rockefeller** Foundation

Resilience Center

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

PARTNERS

Concerned Scientists

Widgets are resizable and movable

You can drag the presenter's video around your screen.

Have a question for presenters? Click the 🕜 icon.

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Luskin Center for Innovation

Hélène Benveniste

Harvard University

Timothy Foreman King's College London

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Stephanie Lackner IE University

UCLA

Luskin Center for Innovation

Hélène Benveniste

University

@HeleneBenvenist

Constrained Immobility

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Postdoctoral Environmental Fellow, Harvard

Climate Change Increases Resource-

Luskin Center for Innovation

Climate Change Increases Resource-Constrained Immobility

UCLA Climate Adaptation Research Symposium 2021

Hélène Benveniste Michael Oppenheimer Marc Fleurbaey

Center for the Environment & Kennedy School, Harvard University School of Public and International Affairs, Princeton University Paris School of Economics, CNRS

Motivation

Migration and Immobility: Two Sides of the Same Coin

Migration and Immobility: Two Sides of the Same Coin

STAY

Migration and Immobility: Two Sides of the Same Coin

Migration and Immobility: Two Sides of the Same Coin

Climate Change and (Im)mobility: A Complex Effect

Groundswell, World Bank, 2018

How much will climate change constrain international migration?

Objectives

Model migration/remittance flows at income quintile level Include it + income distributions in a climate-economy model

Objectives

Model migration/remittance flows at income quintile level Include it + income distributions in a climate-economy model

Climate change decreases emigration of lowest income levels ≥ 10% in some regions for medium devt/climate scenarios ≤ 20% in most regions for pessimistic scenarios Resource-constrained immobility key in climate-migration Remittances do not compensate for damages from CC Populations unable to leave will be extremely vulnerable

Involuntary (im)mobility

Zickgraf 2018, Nawrotski and DeWaard 2018, Carling 2002, Adams 2016, Lubkemann 2008, Ayeb-Karlsson et al. 2020

Empirical evidence of climate change effect on migration

Black et al. 2011, Rigaud et al. 2018, McLeman 2019, Cattaneo and Peri 2016, Adger et al. 2015

Climate change effect on poverty and inequality

Dennig et al. 2015, Rao et al. 2017, Diffenbaugh and Burke 2019, Mendelsohn et al. 2006, Hallegatte and Rozenberg 2017

Migration projections in climate change context

Burzynski et al. 2019, Desmet and Rossi-Hansberg 2015, Cohen et al. 2008, Cruz and RH 2021, Benveniste et al. 2020

Methods

$$\begin{split} ln(move_{od,q}) &= \beta_{0,q} + \beta_{1,q} ln(pop_{o,q}) + \beta_{2,q} ln(pop_{d,q}) \\ &+ \beta_{3,q} ln\left(\frac{ypc_d}{ypc_{o,q}}\right) + \beta_{5,q} \epsilon_{rems,od} + \beta_{6,q} remc_{od} \\ &+ \beta_{4,q} ln(ypc_{o,q}) + \beta_{7,q} ln(dist_{od}) + \beta_{8,q} \mathbb{1}[lang]_{od} + \varepsilon_{odqr} \\ ln(destshare_{od,qr}) &= \gamma_{0,r} + \gamma_{1,r} ln\left(\frac{ypc_d}{ypc_{o,q}}\right) + \varepsilon'_{odqr} \end{split}$$

pop population sizes, ypc per capita incomes, distance, language
rems share of migrant's income sent as remittance, cost remc

migrants' education
 migrants' income
 estimation strategy

Building a Dataset on Bilateral Migration per Income Level

Bilateral migrant flows

Azose and Raftery 2018

Building a Dataset on Bilateral Migration per Income Level

Building a Dataset on Bilateral Migration per Income Level

Estimating gravity equation and migrants' destination income

	ivilgrant flows for origin income quintile	
	origin quintile 1	origin quintile 5
Origin population	0.824***	0.805***
Destination population	0.719***	0.720***
Origin per capita GDP	1.808***	1.808***
Ratio of per capita GDP	1.166***	1.153***
Ν	24,100	24,100
R^2	0.554	0.543
	Migrants share to quintile at destination	
	destination quintile 1	destination quintile 5
Ratio of per capita GDP	0.142***	-0.149***

*p < 0.05, **p < 0.01, ***p < 0.001

Ν

 R^2

Controls: remittance share, remittance cost, distance, language

24,100

0.251

24,100

0.281

Integrated Assessment Models (IAM)

Integrated Assessment Models (IAM)

Integrated Assessment Models (IAM)

FUND (Anthoff and Tol 2013)

Regional disaggregation: 16 regions

Version with income quintiles (Dennig et al. 2015)

FUND (Anthoff and Tol 2013)

Regional disaggregation: 16 regions

Version with income quintiles (Dennig et al. 2015)

Immobility: difference in poorest emigrants with vs without CC

Results & Policy Implications

Damages as Income Shocks on Poorest Populations

Results in poorest quintile, for 2100

Damages Not Compensated by Remittances in the Future

Results in poorest quintile

Damages Not Compensated by Remittances in the Future

Results in poorest quintile

Damages Not Compensated by Remittances in the Future

Results in poorest quintile

Climate Change Decreases Mobility for Lowest Income Levels

Results in poorest quintile, for 2100

Pink shades: climate change reduces outmigration of poorest populations

🕨 calib. 🚺 🕨 cat

Climate Change Decreases Mobility for Lowest Income Levels

Results in poorest quintile, for 2100

Pink shades: climate change reduces outmigration of poorest populations

🕨 calib. 🔪 🕨 ca

catastrophic
damages prop.

damages invers.

Climate Change Decreases Mobility for Lowest Income Levels

Catastrophic damages

Results in poorest quintile, for 2100

Pink shades: climate change reduces outmigration of poorest populations

damages prop.

damages invers

14/15

catastrophic

calib.

Resource-constrained immobility is not a rare circumstance

Likely to play a substantial role in the climate-migration nexus

Populations unable to leave will be extremely vulnerable

Policies might underestimate CC impacts

Questions?

helenebenveniste@fas.harvard.edu

Appendix

A gravity model at the income quintile level

Migration flows per income quintile at origin

Origin o, destination d, income quintile q at origin

$$In(move_{od,q}) = \beta_{0,q} + \beta_{1,q} In(pop_{o,q}) + \beta_{2,q} In(pop_{d,q}) + \beta_{3,q} In\left(\frac{ypc_d}{ypc_{o,q}}\right) + \beta_{5,q} \epsilon_{rems,od} + \beta_{6,q} remc_{od} + \beta_{4,q} In(ypc_{o,q}) + \beta_{7,q} In(dist_{od}) + \beta_{8,q} \mathbb{1}[lang]_{od} + \varepsilon_{odqr}$$

with *pop* quintile population sizes, *ypc* per capita incomes, *rems* share of migrant income sent as remittance, cost *remc*, *dist* distance btw regions, 1[lang] common official language

Distributing migrants over destination income quintiles

Share of migrants per income quintile at destination

Income quintile r at destination

$$In(destshare_{od,qr}^{*}) = \gamma_{0,r} + \gamma_{1,r} In\left(\frac{ypc_{d}}{ypc_{o,q}}\right) + \varepsilon'_{odqr}$$
$$destshare_{od,qr} = \frac{destshare_{od,qr}^{*}}{\sum_{r} destshare_{od,qr}^{*}}$$

Number of migrants per location \times quintile pair

$$move_{od,qr} = destshare_{od,qr} \left(\sum_{r} 1\right) move_{od,qr}$$

Remittances

 $ln(rems_{od}) = \alpha_0 + \alpha_1 ln(ypc_o) + \alpha_2 ln(ypc_d) + \alpha_3 remc_{od} + \epsilon_{od}$

 $1^{\it st}$ generation migrants send remittances, their whole life Migrants stay in same income quintile over time at destination

$$egin{aligned} \mathsf{rem}_{o,q} &= \sum_{d} \mathsf{stock}_{od,qr} imes \mathsf{ypc}_{d,r} imes \mathsf{rems}_{od} imes (1 - \mathsf{remc}_{od}) \ &- \sum_{p} \mathsf{stock}_{po,sq} imes \mathsf{ypc}_{o,q} imes \mathsf{rems}_{po} imes (1 - \mathsf{remc}_{po}) \end{aligned}$$

Risk of dying while attempting to migrate

$$deadmig_{o,q} = \mathbf{1}_{q \leq 3} \sum_{d} riskd_{od} \times move_{od,qr}$$

 $deadmigcost_{o,q} = \mathbf{1}_{q \leq 3} \sum_{d} riskd_{od} \times move_{od,qr} \times max(VSL_d, VSL_o)$

Migrants' education levels in SSP projections

Migrants' income levels in 2010-2015

Population, average income levels

World Development Indicators, World Bank

Income distributions

Gini coefficients for 2010-2015, SSP (Rao et al. 2019)

Remittances flows and costs

World Bank remittance matrices

Remittance Prices Worldwide

Estimation by OLS at country level

Separately for each origin quintile for gravity model Separately for each destination quintile for distribution

Estimation of gravity equation

	Bilateral migrant flows for a given origin income quintile				
	qorig1	qorig2	qorig3	qorig4	qorig5
Origin population	0.824***	0.809***	0.792***	0.807***	0.805***
Destination population	0.719***	0.717***	0.719***	0.718***	0.720***
Origin per capita GDP	1.808***	1.760***	1.865***	1.834***	1.808***
Ratio of per capita GDP	1.166***	1.174***	1.170***	1.166***	1.153***
Residuals for share of income	-0.002	-0.002	-0.001	-0.000	0.001
Cost of sending remittances	-22.604	-25.734	-24.555	-24.232	-24.610
Distance between countries	-1.100***	-1.081***	-1.099***	-1.086***	-1.120***
Common official language	1.433***	1.490***	1.422***	1.436***	1.320***
Ν	24,100	24,100	24,100	24,100	24,100
R^2	0.554	0.540	0.549	0.545	0.543

*p < 0.05, **p < 0.01, ***p < 0.001

Share of migrants to a given quintile at destination

	qdest1	qdest2	qdest3	qdest4	qdest5
Ratio of per capita GDP	0.142***	0.073***	0.027	0.023	-0.149***
Ν	24,100	24,100	24,100	24,100	24,100
R^2	0.251	0.100	0.006	0.012	0.281
* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$					

Estimation of remittance share

Data: World Bank, 2017

 $ln(rems_{od}) = \alpha_0 + \alpha_1 ln(ypc_o) + \alpha_2 ln(ypc_d) + \alpha_3 remc_{od} + \epsilon_{od}$

Share of income sent as remittance

Destination per capita GDP	-0.603***
Ratio of per capita GDP	0.241**
Cost of sending remittances	-5.953
Ν	10,430
R^2	0.133

*p < 0.05, **p < 0.01, ***p < 0.001

How long migrants stay in region

Life expectancy: SSP projections, country level Age when migrating: SSP2 2020, country education 5-yr age Initial stock of migrants: bilateral stocks 2017 (World Bank) + income distribution: education migrants 2015-2020 (SSP) + age distribution: two distributions 2015-2020 (SSP)

Cost of sending remittances

remc_{od}: total cost in %, 2017 (RPW World Bank)

Risk of dying while attempting to migrate

riskd_{od}: data on missing migrants 2014-2018 (IOM)

Incorporating residuals from gravity estimation

Capture each migration corridor's specificity

 $move^*_{od,qr} = move_{od,qr} + \varepsilon_{odqr}$

World regions based on FUND

Name	Countries
USA	United States of America
Canada	Canada
Western Europe	Andorra, Austria, Belgium, Cyprus, Denmark, Finland, France, Germany, Greece, Iceland, Ireland, Italy,
	Liechtenstein, Luxembourg, Malta, Monaco, Netherlands, Norway, Portugal, San Marino, Spain, Sweden,
	Switzerland, United Kingdom
Japan and	Japan, South Korea
South Korea	
Australia and	Australia, New Zealand
New Zealand	
Central and	Albania, Bosnia and Herzegovina, Bulgaria, Croatia, Czech Republic, Hungary, FYR Macedonia, Poland,
Eastern Europe	Romania, Slovakia, Slovenia, Yugoslavia
Former Soviet	Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan, Kyrgyzstan, Latvia, Lithuania, Moldova,
Union	Russia, Tajikistan, Turkmenistan, Ukraine, Uzbekistan
Middle East	Bahrain, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Oman, Qatar, Saudi Arabia, Syria, Turkey, United
	Arab Emirates, West Bank and Gaza, Yemen
Central America	Belize, Costa Rica, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama
South America	Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, French Guiana, Guyana, Paraguay, Peru, Suriname,
	Uruguay, Venezuela
South Asia	Afghanistan, Bangladesh, Bhutan, India, Nepal, Pakistan, Sri Lanka
Southeast Asia	Brunei, Cambodia, East Timor, Indonesia, Laos, Malaysia, Myanmar, Papua New Guinea, Philippines,
	Singapore, Taiwan, Thailand, Vietnam
China plus	China, Hong Kong, North Korea, Macau, Mongolia
North Africa	Algeria, Egypt, Libya, Morocco, Tunisia, Western Sahara
Sub-Saharan	Angola, Benin, Botswana, Burkina Faso, Burundi, Cameroon, Cape Verde, Central African Republic,
Africa	Chad, Congo-Brazzaville, Congo-Kinshasa, Cote d'Ivoire, Djibouti, Equatorial Guinea, Eritrea, Ethiopia,
	Gabon, Gambia, Ghana, Guinea, Guinea- Bissau, Kenya, Lesotho, Liberia, Madagascar, Malawi, Mali,
	Mauritania, Mozambique, Namibia, Niger, Nigeria, Rwanda, Senegal, Sierra Leone, Somalia, South
	Africa, Sudan, Swaziland, Tanzania, Togo, Uganda, Zambia, Zimbabwe

IAM Modeling

IAM Modeling

▲ back

SCC

back

▲ back

Avoid double counting of migration

The Shared Socioeconomic Pathways: Migration Assumptions

Sources: O'Neill et al. 2017, KC and Lutz 2017

Population projections

Demographic model of population dynamics by KC 2020 GDP projections

Similar gravity model with explicit remittances

Energy consumption and GHG emissions projections

Assume climate policies, innovation, consumption not affected Unaffected path along GDP per capita

Gini coefficients based on Rao et al. 2019

Migration-driven changes in education levels, public spending

Gini \rightarrow income quintiles: lognormal distribution

Income quintiles \rightarrow Gini: Lorenz curve

Period	Population growth	GDP per capita growth	Inequality growth	Energy intensity of GDP	Carbon intensity of energy	Carbon price
				growth	growth	
2015-2100	Linearize from 5-year periods to yearly values					
1950-2015	UN World	World Bank	World Bank	Default	1990-2015:	0
	Population	WDI when	WDI when	FUND	CMIP6 data	
	Prospects	available,	available	scenario	1950-1990:	
	2019	otherwise	otherwise		FUND	
		FUND	interpolate		scenario	
		scenario				
2100-2300	Linear decline	Linear decline		Fixed at 2090-2100 rate		0
	to 0 in 2200,	reaching 0		if < 0 in 2100, otherwise		
	then constant			linear decl	ine reaching 0	
2300-3000	Steady state: growth rates $= 0$					

Emissions & Energy Consumption & Carbon Prices Scenarios

Development scenarios: Shared Socioeconomic Pathways (SSP) + Climate scenarios: Representative Concentration Pathways (RCP)

Source: O'Neill et al. (2016). CMIP6 data: Gidden et al. (2019)

Global Carbon Prices

Global carbon prices for each SSP-RCP as input in FUND

 \longrightarrow ensures consistent mitigation costs

Source: IIASA SSP Database

Quantifying climate change-related immobility

Difference in poorest emigrants for runs with vs without CC

Damages distribution onto income quintiles

Damages proportional, **indep.**, inversely prop. to income **Input scenarios of future development & climate change** Five SSP-Representative Concentration Pathways (RCP) SSP2-RCP4.5 (**medium**), SSP3-RCP7.0 (**pessimistic**) **Damages functional form & calibration**

Specification with catastrophic damages (Weitzman 2012)

Income profiles of migrants

Income profiles of migrants

∫ d back

Income profiles of migrants for all damage elasticities

Income profiles of migrants for SSP3-RCP7.0

Cumulative number of migrants living abroad

Net migration per income quintile

Net remittances per income quintile

Damages on poorest populations for other elasticities

Results in quintile 1, for 2100, for SSP2-RCP4.5

Damages as shocks on poorest populations for SSP2-RCP4.5

Damages as shocks on poorest populations for SSP3-RCP7.0

Within-region inequality

Damage elasticity affects inequality only in a few regions

Within-region Gini coefficients vs original SSP

CC effect on immobility for SSP2-RCP4.5

CC effect on immobility for SSP3-RCP7.0

CC effect on numbers of migrants per income quintile

Immobility with corrected calibration for SSP2-RCP4.5

Immobility with catastrophic damages for SSP2-RCP4.5

Immobility with catastrophic damages for SSP3-RCP7.0

Immobility when damages proportional to income

Immobility when damages inversely prop. to Income

Robustness check: gravity with other migration dataset

Derivation from stocks to flows using Abel 2018

	0		0	
qorig1	qorig2	qorig3	qorig4	qorig5
0.716***	0.698***	0.684***	0.702***	0.709***
0.726***	0.721***	0.722***	0.724***	0.726***
1.758***	1.665***	1.746***	1.698***	1.639***
1.487***	1.489***	1.483***	1.480***	1.479***
0.005	0.005	0.005	0.006	0.006
-13.805	-16.647	-15.139	-14.794	-14.319
-0.952***	-0.922***	-0.933***	-0.910***	-0.926***
1.188***	1.293***	1.247***	1.280***	1.245***
15,765	15,765	15,765	15,765	15,765
0.436	0.423	0.426	0.425	0.428
	qorig1 0.716*** 0.726*** 1.758*** 1.487*** 0.005 -13.805 -0.952*** 1.188*** 15,765 0.436	qorig1 qorig2 0.716*** 0.698*** 0.726*** 0.721*** 1.758*** 1.665*** 1.487*** 1.489*** 0.005 0.005 -13.805 -16.647 -0.952*** -0.922*** 1.188*** 1.293*** 15,765 15,765 0.436 0.423	qorig1 qorig2 qorig3 0.716*** 0.698*** 0.684*** 0.726*** 0.721*** 0.722*** 1.758*** 1.665*** 1.746*** 1.487*** 1.489*** 1.483*** 0.005 0.005 0.005 -13.805 -16.647 -15.139 -0.952*** -0.922*** -0.933*** 1.188*** 1.293*** 1.247*** 15,765 15,765 15,765 0.436 0.423 0.426	qorig1 qorig2 qorig3 qorig4 0.716*** 0.698*** 0.684*** 0.702*** 0.726*** 0.721*** 0.722*** 0.724*** 1.758*** 1.665*** 1.746*** 1.698*** 1.487*** 1.489*** 1.483*** 1.480*** 0.005 0.005 0.006 -13.805 -16.647 -15.139 -14.794 -0.952*** -0.922*** -0.933*** -0.910*** 1.188*** 1.293*** 1.247*** 1.280*** 15.765 15.765 15.765 15.765 0.436 0.423 0.426 0.425

Bilateral migrant flows for a given origin income quintile

	qorig1	qorig2	qorig3	qorig4	qorig5
Origin population	0.824***	0.809***	0.792***	0.807***	0.805***
Destination population	0.719***	0.717***	0.719***	0.718***	0.720***
Origin per capita GDP no rem	1.808***	1.760***	1.865***	1.833***	1.807***
Ratio of per capita GDP	1.166***	1.174***	1.170***	1.166***	1.153***
Residuals for share of income	-0.002	-0.002	-0.001	-0.000	0.001
Cost of sending remittances	-22.619	-25.743	-24.567	-24.240	-24.614
Distance between countries	-1.100***	-1.081***	-1.099***	-1.086***	-1.120***
Common official language	1.433***	1.490***	1.422***	1.436***	1.320***
Ν	24,100	24,100	24,100	24,100	24,100
R^2	0.554	0.540	0.549	0.545	0.543

Bilateral migrant flows for a given origin income quintile

Robustness check: gravity with quadratic origin income

	Bilateral migrant flows for a given origin income quintile				
	qorig1	qorig2	qorig3	qorig4	qorig5
Origin population	0.851***	0.830***	0.810***	0.826***	0.810***
Destination population	0.720***	0.718***	0.720***	0.719***	0.722***
Origin per capita GDP	-0.151	-0.466	-0.826	-2.306	-4.977*
Origin per capita GDP squared	0.128**	0.135*	0.155*	0.229**	0.350***
Ratio of per capita GDP	1.176***	1.182***	1.177***	1.176***	1.165***
Residuals for share of income	-0.001	-0.001	0.000	0.001	0.004
Cost of sending remittances	-26.028	-28.520	-27.122	-27.068	-26.262
Distance between countries	-1.104***	-1.083***	-1.101***	-1.089***	-1.128***
Common official language	1.398***	1.464***	1.401***	1.415***	1.295***
Ν	24,100	24,100	24,100	24,100	24,100
R^2	0.561	0.545	0.554	0.555	0.557

~

*p < 0.05, **p < 0.01, ***p < 0.001

Robustness check: gravity with cubic origin income

	Dilateral	Dilateral inigrant nows for a given origin meone quintile				
	qorig1	qorig2	qorig3	qorig4	qorig5	
Origin population	0.851***	0.829***	0.809***	0.825***	0.811***	
Destination population	0.721***	0.720***	0.721***	0.720***	0.723***	
Origin per capita GDP	2.281	11.771	13.343	13.075	16.413	
Origin per capita GDP squared	-0.204	-1.394	-1.522	-1.503	-1.872	
Origin per capita GDP cubed	0.015	0.062	0.065	0.064	0.076	
Ratio of per capita GDP	1.176***	1.183***	1.178***	1.176***	1.164***	
Residuals for share of income	-0.002	-0.004	-0.002	-0.001	0.002	
Cost of sending remittances	-25.774	-27.621	-26.342	-26.474	-26.011	
Distance between countries	-1.108***	-1.095***	-1.111***	-1.096***	-1.132***	
Common official language	1.393***	1.450***	1.389***	1.406***	1.286***	
Ν	24,100	24,100	24,100	24,100	24,100	
R^2	0.561	0.547	0.556	0.556	0.558	

Bilateral migrant flows for a given origin income quintile

Robustness check: gravity with ratio of average per capita incomes

Bilateral migrant flows for a given origin income quintile

	Bhaterai	Blateral migrant nows for a given origin meone quintile			
	qorig1	qorig2	qorig3	qorig4	qorig5
Origin population	0.837***	0.820***	0.799***	0.808***	0.786***
Destination population	0.706***	0.710***	0.715***	0.717***	0.718***
Origin per capita GDP	1.449***	1.546***	1.753***	1.805***	1.806***
Ratio of per capita GDP	1.065***	1.130***	1.156***	1.165***	1.087***
Residuals for share of income	-0.002	-0.003	-0.002	-0.001	0.004
Cost of sending remittances	-20.998	-24.285	-23.475	-23.813	-26.333
Distance between countries	-1.057***	-1.042***	-1.070***	-1.075***	-1.169***
Common official language	1.624***	1.651***	1.537***	1.479***	1.154***
Ν	24,100	24,100	24,100	24,100	24,100
R^2	0.540	0.533	0.547	0.545	0.533

Robustness check: gravity with ratio of specific per capita incomes

Bilateral migrant flows for a given origin income quintile

	Dilateral inigrant news for a given origin meonie quintile				
	qorig1	qorig2	qorig3	qorig4	qorig5
Origin population	0.811***	0.797***	0.779***	0.795***	0.794***
Destination population	0.705***	0.703***	0.705***	0.704***	0.706***
Origin per capita GDP	1.381***	1.327***	1.430***	1.399***	1.375***
Ratio of per capita GDP	0.785***	0.791***	0.788***	0.786***	0.777***
Residuals for share of income	0.005	0.005	0.006	0.007	0.008
Cost of sending remittances	-23.518	-26.612	-25.398	-25.029	-25.304
Distance between countries	-1.126***	-1.105***	-1.123***	-1.109***	-1.139***
Common official language	1.391***	1.452***	1.387***	1.405***	1.300***
Ν	24,100	24,100	24,100	24,100	24,100
R^2	0.517	0.502	0.511	0.507	0.505

Robustness check: gravity with gini coefficients

	qorig1	qorig2	qorig3	qorig4	qorig5
Origin population	0.819***	0.805***	0.790***	0.807***	0.817***
Destination population	0.733***	0.732***	0.732***	0.732***	0.732***
Origin per capita GDP	1.809***	1.746***	1.832***	1.791***	1.751***
Ratio of per capita GDP	1.122***	1.127***	1.126***	1.122***	1.122***
Gini at origin	1.044	0.687	0.069	-0.281	-1.883
Gini at destination	-1.734	-1.857	-1.791	-1.846	-1.801
Residuals for share of income	-0.000	-0.000	0.000	0.001	0.001
Cost of sending remittances	-22.227	-25.248	-23.888	-23.404	-22.987
Distance between countries	-1.083***	-1.058***	-1.069***	-1.049***	-1.051***
Common official language	1.503***	1.584***	1.549***	1.590***	1.598***
N	24,100	24,100	24,100	24,100	24,100
R^2	0.517	0.502	0.511	0.507	0.505

Bilateral migrant flows for a given origin income quintile

Timothy Foreman Postdoctoral Research Associate, King's College London @ForemanTim

to Migrate

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Environmental Shocks and the Decision

Luskin Center for Innovation

Environmental Shocks and the Decision to Migrate

Timothy Foreman

King's College London & EIEE

September 8, 2021

OVERVIEW	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
●000	0000	0000	0000	000	0

Background

World Bank

OVERVIEW	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
0000	0000	0000	0000	000	0

Motivation

Khartoum, Sudan 2007

OVERVIEW	Data	Empirical Strategy	INTERNATIONAL	Regional	CONCLUSION
0000	0000		0000	000	O

Main Contributions

- Using micro-level census data to assess the impact of climate on migration patters, both within and across countries
 - Show that long-term trends in temperature and precipitation impact migration across West Africa
 - Dust exposure decreases migration in this context, differing from others

Overview	Data	Empirical Strategy	INTERNATIONAL	Regional	CONCLUSION
0000	0000		0000	000	O

Recent literature

Air pollution & migration

► Chen et al. (2017); Bayer et al. (2009)

Dust storm & air pollution impacts

 Ai and Polenske (2008); Graff Zivin and Neidell (2012); Hornbeck (2012); Hanna and Oliva (2015); Aragon et al. (2016); Arthi (2018); Birjandi-Feriz and Yousefi (2018)

Climate & Migration

 Beine and Parsons (2016); Cattaneo and Peri (2016); Missirian and Schlenker (2017)

Overview	D ата	Empirical Strategy	INTERNATIONAL	Regional	CONCLUSION
0000	●000		0000	000	O

Dust data

- Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2) assimilated Aerosol Optical Depth
 - $0.5^{\circ} \times 0.625^{\circ}$, daily resolution
- Concern: picking up other aerosols

OTENTIEN DANK	LIVIPINICAL STRATEGT	INTERNATIONAL	REGIONAL	CONCLUSION
0000 0000	0000	0000	000	0

West African Monsoon

MERRA-2 AOD average, Jun-Sep 1980-2016

0000 0000 0000 0000 0	OVERVIEW	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
	0000	0000	0000	0000	000	0

West African Monsoon

MERRA-2 AOD average, Nov-Apr 1980-2016
OVERVIEW	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
0000	0000	0000	0000	000	0

Migration Data

IPUMS-International

 10% sample of census data from many countries, standardized to the degree possible

Overview 0000	DATA 0000	EMPIRICAL STRATEGY	INTERNATIONAL 0000	Regional 000	CONCLUSION O

Two Pieces

- First: Consider international migration based on censuses in the destination countries, use information on where respondents lived in prior years
- Second: Consider intranational migration across regions using census data from Burkina Faso and Senegal

OVERVIEW D	Оата	EMPIRICAL STRATEGY	INTERNATIONAL	REGIONAL	CONCLUSION
0000 0	0000	0000	0000	000	0

Empirical Model- International Migration

$$Y_{ijt} = \beta_O D_{it} + \psi_O T_{it} + \eta_O P_{it} + \beta_D D_{jt} + \psi_D T_{jt} + \eta_D P_{jt} + \phi_{ij} + \alpha_t + \epsilon_{ijt}$$

- $Y_{ijt} =$ Migration from i to j in year t
- D_{it} is the population-weighted average dust exposure over origin country i in year t
- T_{it} is the population-weighted average temperature over origin country *i* in year *t*
- P_{it} is the population-weighted average precipitation over origin country *i* in year *t*
- ϕ_{ij}, α_t allow for country pair fixed effects, year fixed effects
- *e*_{ijt} allowed to be correlated within the origin country over time, standard errors
 clustered at origin country

 OVERVIEW
 DATA
 EMPIRICAL STRATEGY
 INTERNATIONAL
 REGIONAL
 CONCLUSION

 0000
 0000
 0000
 0000
 0000
 0000
 0

Endogeneity in dust measurement

- Locally emitted dust
- Instrument using the Bodélé Depression
- Identifying assumption: Bodélé dust is uncorrelated with economic activity except through its effects on dust over the countries of interest

Overview	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
0000	0000		0000	000	O

Dust Transport

0000 0000 0000 000 000 0	OVERVIEW	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
	0000	0000	0000	●000	000	0

Results

	(1)	(2)	(3)
VARIABLES	Migration rate	Migration rate	Migration rate
Dust exposure, Origin	-265.149	-260.075	-258.851
	(167.124)	(163.755)	(159.753)
Temperature, Origin	0.369	0.313	0.289
	(0.295)	(0.308)	(0.376)
SPI, Origin	-8.752	-13.199	-13.693
	(14.309)	(15.279)	(15.384)
Excess SPI, Origin	-51.193	-45.458	-42.901
	(59.095)	(57.213)	(51.513)
Drought SPI, Origin	-3.342	3.583	3.803
	(42.317)	(42.426)	(41.986)
Observations	509	509	509
B-squared	0 138	0 139	0 139
Pair FF	X	X	X
First stage F-stat	322.9	289.9	291.9
Year trend	OLL.O	X	20110
Country-year trend			х
Bobust	standard errors	in parentheses	

*** p<0.01, ** p<0.05, * p<0.1

OVERVIEW I	Data 0000	Empirical Strategy	INTERNATIONAL 0000	Regional 000	CONCLUSION O
0000	0000	0000		000	0

Precipitation

0000 0000 0000 0000 0	OVERVIEW	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
	0000	0000	0000	0000	000	0

Results

	(1)	(2)	(3)
VARIABLES	Migration rate	Migration rate	Migration rate
Dust exposure, 5 years	-305.354	-290.614*	-290.640*
	(187.676)	(174.455)	(174.664)
Temperature, 5 years	0.475	0.553	0.578
	(0.438)	(0.463)	(0.407)
SPI, 5 years	-64.715	-111.668	-113.217
	(59.283)	(81.338)	(80.598)
Excess SPI, 5 years	-267.356	-217.714	-210.609
	(214.402)	(192.400)	(168.577)
Drought SPI, 5 years	82.527	155.631	157.779
	(80.486)	(115.298)	(114.181)
Observations	453	453	453
R-squared	0.015	0.150	0.150
Pair FE	Х	Х	Х
First stage F-stat	645.8	602.3	600.8
Year trend		Х	
Country-year trend			Х
Bobust	standard errors	in narentheses	

*** p<0.01, ** p<0.05, * p<0.1

Overview 0000	Data 0000	EMPIRICAL STRATEGY	INTERNATIONAL	Regional 000	CONCLUSION O

Precipitation

Overview	Data	EMPIRICAL STRATEGY	INTERNATIONAL	Regional	CONCLUSION
0000	0000		0000	•00	O

Results

(1) (2)							
VARIABLES Senegal Burkina Faso							
Temperature	0.041	0.000					
	(0.024)	(0.003)					
SPI	-0.006						
(0.233) (0.010)							
Observations 1,272,466 3,123,562							
R-squared 0.011 0.006							
Year FE X X							
Robust standard errors in parentheses							
*** p<0.01, ** p<0.05, * p<0.1							

Overview	Data	Empirical Strategy	INTERNATIONAL	REGIONAL	CONCLUSION
0000	0000	0000	0000	000	0

Results

	(1)	(2)				
VARIABLES	Senegal	Burkina Faso				
Temperature (5 year mean)	0.126**	0.000				
	(0.060)	(0.003)				
SPI (5 year mean)	-0.060	-0.006				
	(0.096)	(0.010)				
Observations	1 272 466	3 123 562				
R-squared	0.010	0.006				
Year FE	X	X				
Robust standard errors in parentheses						

** p<0.01, ** p<0.05, * p<0.1

Overview	Data	Empirical Strategy	INTERNATIONAL	REGIONAL	CONCLUSION
0000	0000	0000	0000	000	0

Over Time- Dust

Conclusions & Future Work

- Climate has long-term effects on migration, but little contemporaneously
- ► Dust exposure is a contributing factor
- The time dynamics are an important part of regional migration
- Will explore individual characteristics to determine who is moving

Stephanie Lackner Assistant Professor, IE University

@slackner0

Cellphone GPS Location Data

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Population Movement Response to Hurricane Exposure - Tracked with

Luskin Center for Innovation

POPULATION MOVEMENT RESPONSE TO HURRICANE EXPOSURE - TRACKED WITH CELLPHONE GPS LOCATION DATA

Stephanie Lackner¹, Michael Oppenheimer², and Elmira Kalhor²

¹IE University, stephanie.lackner@ie.edu ²Princeton University

Climate Adaptation Research Symposium September 8, 2021

Source: SC National Guard, 170831-Z-AH923-081

Mobility and Migration

- Mobility during warning phase
- Mobility during storm
- Evacuation
- Displacement
- Migration
- Short/medium/long-term changes in mobility

LITERATURE

- Interdisciplinary
- Migration after extreme events (e.g. Black et al. (2013), Cattaneo et al. (2019))
- Hurricane Katrina (e.g. Paxson & Rouse (2008), Fussell et al.(2009), Deryugina (2017))
- GPS Data (e.g. Bengtsson et al. (2011), Lu et al. (2012), Lu et al. (2016), Yabe (2019), Boas et al. (2020), Acosta (2020))

HURRICANE HARVEY

"Harvey [...] rapidly intensified into a category 4 hurricane [...] before making landfall along the middle Texas coast. The storm then stalled [...] dropping historic amounts of rainfall [...] Harvey is the second-most costly hurricane in U.S. history [...] at least 68 people died"

Source: National Hurricane Center Tropical Cyclone Report Hurricane Harvey (AL092017)

TIMELINE

- 8/17 tropical storm
- 8/24 first hurricane warning issued
- 8/26 first landfall
- 8/31 all tropical storm warnings discontinued

Data

- GPS Data from PlaceIQ (private location intelligence provider)
- Hurricane Harvey Data
 - FEMA Flood Depths Grid Data
 - FEMA Building Damage Data
- ACS5 2016 census tract data

Activity During Harvey

DAILY ACTIVITY

Device Level Data Set

Summary

- Ca. 500,000 devices
- Ca. 55,000,000 device-days
- July 2017 October 2018

Usual Location ("home")

- Centroid of visits in most visited ZIP codes
- Census tract data
- Average flooding in census tract

DISTANCE FROM USUAL LOCATION

DISTANCE FROM USUAL LOCATION

Flood

Poverty

BLACK

Flood

Owner Occupied

REGRESSION ANALYSIS

$Y_{i,t} = \alpha_i + T_t \times CT_i + \varepsilon_{i,t}$

 T_t Timing (6 separate periods) CT_i Census tract characteristics
max_distance_t~d	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
timing August 24-25 August 26-27 August 28-31 September after September	16.03654 44.23695 27.47719 18.54044 44.74033	.4166596 .6013688 .3558762 .1446854 .1166784	38.49 73.56 77.21 128.14 383.45	0.000 0.000 0.000 0.000 0.000	15.2199 43.05829 26.77968 18.25687 44.51164	16.85318 45.41562 28.17469 18.82402 44.96901
_cons	60.81715	.0969976	627.00	0.000	60.62703	61.00726

		Robust				
max_distance_to~d	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
timing						
August 24-25	17.6805	.4787398	36.93	0.000	16.74219	18.61881
August 26-27	47.59634	.6932225	68.66	0.000	46.23765	48.95503
August 28-31	29.59836	.4100922	72.17	0.000	28.79459	30.40213
September	19.4031	.1661491	116.78	0.000	19.07745	19.72875
after September	46.09998	.1341613	343.62	0.000	45.83703	46.36293
flooding	0	(omitted)				
timing#c.flooding						
August 24-25	-7.183298	.9707489	-7.40	0.000	-9.085931	-5.280665
August 26-27	-14.77129	1.387654	-10.64	0.000	-17.49105	-12.05154
August 28-31	-9.201179	.823676	-11.17	0.000	-10.81555	-7.586803
September	-3.78949	.3373715	-11.23	0.000	-4.450726	-3.128253
after September	-5.944983	.2712262	-21.92	0.000	-6.476576	-5.413389
_cons	60.82649	.0969832	627.19	0.000	60.63641	61.01658

max_distance_to~d	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
timing						
August 24-25	20.35002	.6744662	30.17	0.000	19.02809	21.67195
August 26-27	55.46899	.9556933	58.04	0.000	53.59586	57.34211
August 28-31	28.44357	.5641532	50.42	0.000	27.33785	29.54929
September	16.33457	.2312555	70.63	0.000	15.88132	16.78783
after September	42.15079	.188827	223.22	0.000	41.7807	42.52089
timing#flooding						
August 24-25#1	-8.679985	1.36666	-6.35	0.000	-11.35859	-6.00138
August 26-27#1	-18.2857	1.952196	-9.37	0.000	-22.11193	-14.45947
August 28-31#1	-9.170367	1.145872	-8.00	0.000	-11.41624	-6.9245
September#1	-1.277367	.4735432	-2.70	0.007	-2.205495	3492397
after September #						
1	-1.861781	.3784813	-4.92	0.000	-2.603591	-1.119971
timing#						
c.mv_black_alone						
August 24-25	-18.53514	3.239567	-5.72	0.000	-24.88457	-12.1857
August 26-27	-55.74212	4.636544	-12.02	0.000	-64.82958	-46.65466
August 28-31	7.73922	2.738602	2.83	0.005	2.371658	13.10678
September	21.24377	1.083697	19.60	0.000	19.11976	23.36777
after September	27.54978	.9070207	30.37	0.000	25.77205	29.3275
timing#flooding#						
c.mv black alone						
August 24-25#1	8,199828	7.908285	1.04	0.300	-7.300127	23,69978
August 24 20#1	17.30828	11,44929	1.51	0.131	-5.131916	39.74847
August 28-31#1	2,221445	6.575643	0.34	0.735	-10.66658	15,10947
Sentember#1	-16.36781	2 574519	-6.36	0.700	-21 41377	-11 32185
after Sentember #	10.30/01	2.0/401/	0.50	0.000	21.413//	11.02105
1	-28.74592	2.064901	-13.92	0.000	-32.79305	-24.69879
_cons	60.84307	.0970068	627.20	0.000	60.65294	61.0332

MAIN REGRESSION RESULTS

- Average distance increased by about 55km during Harvey.
- Still up by 16km in September 2017 and increases to 42km afterward.
- Less evacuation/distance from more flooding affected census tracts. Particularly during Harvey (-18km).
- Less evacuation/distance from black census tracts during Harvey (55km). More distance after Harvey.

Results

- Increased mobility pre-landfall phase of Harvey.
- Vulnerability related to race and socio-economic characteristics stronger factors than direct exposure.
- Pre-Harvey 29% of devices were active in the 10-100 km range from their usual location. During Harvey, only about 20%. Recovered quickly and increased to 33% by early September, increasing further into 2018.
- Pre-Harvey 5% of devices were active more than 100 km from their usual location. During Harvey it was 15%, and it went down to 6% by September 10.

Up next – 10:45am-12:15pm PT

International Lessons on Climate Adaptation

Before the Storm: Responses to Forecasts

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Quantifying and Minimizing the Impacts of Wildfires Proactive Planning for Resilient and Equitable Communities

UCLA

Luskin Center for Innovation

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Thanks for tuning in!

Luskin Center for Innovation