CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

International Lessons on Climate Adaptation

Thanks for joining us! The session will begin shortly.

UCLA

Luskin Center Innovation

Thank you to our event collaborators

Adrienne **Arsht-Rockefeller** Foundation **Resilience Center**

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

PARTNERS

Concerned Scientists

Widgets are resizable and movable

You can drag the presenter's video around your screen.

Have a question for presenters? Click the 🕜 icon.

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Luskin Center for Innovation

Shaikh Escander London School of Economics

Chris M. Boyd University of Minnesota

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Paul Stanier UCLA

UCLA

Luskin Center for Innovation

Shaikh Escander Senior Lecturer, Kingston University

Senior Lecturer, Ki @shaikh_eskander

Upscaling Adaptation to Climate Change Through Female Entrepreneurship

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Luskin Center for Innovation

Upscaling adaptation to climate change through female entrepreneurship

The role of gender in firm-level climate change adaptation behavior: Insights from small businesses in Senegal and Kenya

Kate Gannon, Shaikh Eskander, Elena Castellano,

Mamadou Diop, Dorice Agol, Antonio Avila

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Research Institute on Climate Change and the Environment

Introduction

- SMEs play crucial roles for local economic development, including by contributing to economic growth and poverty reduction (Ayandibu and Houghton, 2017)
- The enterprise landscape in developing countries is dominated by small and medium enterprises (SMEs)
 - In Senegal, for example, they represent 90% of all enterprises and employ 60% of the active population (GOV, 2014)
- SMEs are more vulnerable to climate risks and have a lower ability to deal with weather extremes (Yoshida and Deyle, 2005; Runyan, 2006; Wedawatta et al, 2010).
 - Even fairly moderate changes in climate parameters can produce significant, but underrecognised, consequences for SMEs across a range of urban and rural sectors (Gannon et al., 2018; Siderius et al., 2018).
- Private sector actors will innovate in response to changing climatic impacts and pressures
 - by adopting measures to reduce costs, manage their internal exposure to risks, minimise disruption to their operations and maximise opportunities where they arise (e.g., Mendelsohn, 2012).
- As such, an emerging body of literature has explored the processes through which businesses institute strategies to manage climate risk within their own operations (Pauw and Pegels 2013)

Introduction

- Gender can play a significant role here: women often make relatively higher contributions to family and social welfare than men -
 - Gender gaps in financial inclusion can influence sustainable development (Adegbite and Machete, 2019)
 - Gender gaps in access to agricultural inputs can lead to gender gaps in agricultural productivity (FAO, 2011)
 - Closing the gender gap in access to agricultural inputs could increase farm yields by 20-30% (Quisumbing et al, 2014)
 - Gender gaps in education can affect GDP (Abu-Ghaida and Lmasen, 2004).
- Their traditional roles positioned women to have unique situated knowledges (Haraway 1991, Harding 1991) and expertise that they bring to adaptation (UN WomenWatch, 2009; Wedeman and Petruney, 2018; Enarson 2013; Antwi, 2020).
 - These can be useful as entrepreneurs when making adaptation decisions

Gender and adaptation by SMEs

- Women may occupy a strategic role in adaptation wherein they may be more likely to undertake sustainable, equitable or effective adaptation actions than men
- Despite being an interesting topic, literature on this specific aspect is almost non-existent.
 - A search of the Scopus database in October 2020 using the key words "Adapt* AND Woman OR gender* OR female AND Climate change AND Entrepreneur* OR business OR enterprise" returned only 61 relevant articles
 - Of these 12 were focused on gendered adaptation behavior, to which 5 others were added through a snowball search of their references.
 - Of these 17, only 2 papers directly addressed gender dimensions of adaptation behavior at firm-level, where the rest focused on household or individual dimensions.
- None conducted a quantitative investigation

Our contribution

- This paper contributes to this gap in the literature by exploring how female gender representation at firm level impacts the propensity of a firm to undertake (un)sustainable adaptation behaviour.
- Given the key role of exposure in shaping adaptation behaviour (Crick et al., 2018), we consider how this propensity varies in the context of increasing exposure to extreme events.
- In particular, we empirically investigate
 - 1. how female representations in ownership and management of SMEs in Kenya and Senegal affect their adoption of sustainable and unsustainable adaptation strategies,
 - 2. mitigating/exaggerating effects of financial barriers and assistance, and
 - 3. implications of those strategies for preparation for the future.

Data: SME survey (2016)

- We use the dataset collected by Crick et al. (2018).
- The survey, conducted in 2016, comprises 325 SMEs in three different regions of Senegal (Louga, Saint Louis and Kaolack) and in the county of Laikipia in Kenya.
- For our analysis, we restrict the sample to SMEs that are relatively homogenous in terms of their size, exposure to climate events and ownership structures.
 - In particular, we exclude SMEs that were exposed to more than 8 extreme events (this only removes one outlier), have more than 10 employees or more than 5 owners.
- The final estimating sample consists of 205 SMEs: 125 in Kenya and 80 in Senegal.

Adaptation strategies

- Following Crick *et al.* (2018), we categorize adaptation strategies into sustainable and unsustainable strategies.
- Sustainable strategies may not have any adverse effect on SME's future profits
 - uptakes of loans and insurances,
 - switching to different commodities or crops,
 - trading or farming additional commodities or crops, and
 - switching to different varieties of same commodities or crops
- Unsustainable strategies might adversely affect their future returns
 - reducing the number of employees,
 - selling of productive assets,
 - · selling assets at lower price, and
 - mortgaging assets.

Future planning

- Future planning actions that might increase business *resilience* include
 - increased water and energy efficiency to improve operations,
 - upgradation or retrofitting infrastructure, equipment or company assets to reduce impact of the risk,
 - · coordinating with other firms, and
 - uptake of loans to increase climate resilience.
- Future planning actions that might increase business *expansion* include
 - adoption of new crop varieties or new breeds or new commodities,
 - diversifying operations or switch to a different commodity, and
 - uptake of insurance to cover assets or activities at risk.
- Future planning actions that might increase business contraction include
 - discontinuation of business partnerships and
 - relocation of facilities or assets to reduce the risk of exposure.

Explanatory variables

- Surveyed firms report the *number of extreme events* that they have experienced in last five years.
 - Examples of such events include drought, flood, extreme rainfall, storms, extreme heat, extreme cold, extreme windstorms and dust.
- We construct the *gender variable* in terms of representation of females in ownership and management of the SME.
 - The variable takes the value of 1 if there is at least one female owner, or if the main manager of the firm is a woman.
- The *vector of controls* includes different indicators of adaptive capacity
 - such as financial barriers, assistance, training, membership, and market distance.

Econometric specifications

- SMEs decide how many sustainable and unsustainable adaptation strategies to adopt.
- Here, our outcome variables are count variables and therefore are non-negative.
- Therefore, we fit the following Poisson regression model

$$E(y|x) = \exp\left(\alpha + \beta_1 N_i + \beta_2 N_i^2 + \beta_3 F_i + \beta_4 N_i \times F_i + \beta_5 N_i^2 \times F_i + \mathbf{z}\delta + u_i\right),\tag{1}$$

- *x* : all the explanatory variables,
- $z \subset x$: internal firm characteristics and external business environment.
- N_i : the number of climate events experienced by the SME *i*,
- F_i : gender representation.
- We are interested in the estimated coefficients of the interaction terms,
 - i.e., $\hat{\beta}_4$ and $\hat{\beta}_5$, that show the additional effects the SMEs experiences due to female representation when choosing their adaptation strategies when exposed to climate events.

Econ.. (2)

- We next investigate the potential mitigating or exaggerating effects of assistance and training.
- We include additional interactions to eq. (1):

E(y|x)

 $= \exp\left(\alpha + \beta_1 N_i + \beta_2 N_i^2 + \beta_3 F_i + \beta_4 N_i \times F_i + \beta_5 N_i^2 \times F_i + \gamma_1 N_i \times M_i + \gamma_2 N_i^2 \times M_i + \gamma_3 F_i \times M_i \right)$ + $\gamma_4 N_i \times F_i \times M_i + \gamma_5 N_i^2 \times F_i \times M_i + \mathbf{z}\delta + u_i$, (2)

- where γ_4 and γ_5 denote the mitigating/exaggerating effects of assistance or training (M_i).
- All other variables and estimation strategy are as described for equation (1).

Econ.. (3)

- Finally, we investigate the implications of the adoptions of sustainable and unsustainable adaptation strategies for future planning.
- We adopt a 2SLS method where the first stage has been estimated by eq. (1).
- In the second stage, we estimate

$$P_i = \omega_0 + \omega_1 \hat{S}_i + \omega_2 \hat{R}_i + \boldsymbol{w}\theta + \epsilon_i, \qquad (3)$$

- \hat{S}_i and \hat{R}_i : predicted number of sustainable and unsustainable adaptation strategies
- P_i : outcome variables: resilience, expansion and contraction.
- We adopt a linear probability model with cluster-robust standard errors to retrieve the marginal effects of \hat{S}_i and \hat{R}_i on P_i , i.e., $\hat{\omega}_1$ and $\hat{\omega}_2$.

Results (1)

- SMEs with female representation are less propense to implement unsustainable adaptation when they are not exposed to extreme events
- However, they do not keep the same propensity as their exposure to extreme events increases
- When faced with an increased number of disasters, female-led/owned SMEs adopt more unsustainable adaptation practices (at a decreasing rate)

	Main specification: Poisson Regressions		Alternative specification: Negative Binomial Regressions	
Variables	Sustainable	Unsustainable	Sustainable	Unsustainable
No. of events	2.311**	-0.012	2.259**	-0.009
	(1.045)	(0.459)	(1.052)	(0.458)
(No. of events) ^{2}	-0.500*	0.034	-0.485*	0.033
	(0.261)	(0.061)	(0.264)	(0.062)
Females	0.714	-1.481**	0.622	-1.504**
	(0.855)	(0.656)	(0.891)	(0.673)
Females \times No. of events	-1.018	1.363***	-0.912	1.375***
	(1.057)	(0.377)	(1.093)	(0.382)
Females \times (No. of events) ²	0.289	-0.254***	0.265	-0.257***
	(0.262)	(0.058)	(0.269)	(0.056)
No. of Obs.	204	204	204 0.159	204 0.213
R-squared District FE	YES	YES	VES	VES
Control variables	YES	YES	YES	YES

Table 2 Main Results: Effects of Gender

Results (2)

- Assistance and Training are significant mitigating effects, with their potentials of
 - increasing sustainable adaptation strategies by female-led SMEs
 - decreasing unsustainable adaptation strategies by female-led SMEs

Table 3. Mitigating Effects				
Variables	Sustainable	Unsustainable		
<u>Assistance</u>				
\times Females \times No. of events	4.180***	-1.031		
	(0.885)	(0.652)		
\times Females \times (No. of events) ²	-0.890***	0.400**		
	(0.210)	(0.198)		
Training				
\times Females \times No. of events	5.003**	-0.405		
	(2.502)	(0.631)		
\times Females \times (No. of events) ²	-1.094	0.169*		
	(0.672)	(0.098)		

Results (3)

- The choice of climate resilient planning is especially affected by current adaption strategies
- In turn, these have implications for women entrepreneurs and for mitigating strategies

Table 4. Future Planning						
Variables	Climate	Business	Business			
	Resilience	Expansion	Contraction			
No. of sustainable adaptation practices (est.)	0.081***	0.023	0.014			
	(0.017)	(0.043)	(0.008)			
No. of unsustainable adaptation practices (est.)	0.055**	0.052	0.028			
	(0.017)	(0.085)	(0.020)			
Observations	204	204	204			
R-squared	0.249	0.155	0.189			
District FE	YES	YES	YES			
Control variables	YES	YES	YES			

Summary and Policy Implications

- General business support, adaptation assistance (particularly to women), and specific trainings encourage sustainable adaptation responses
- Engaging in adaptation today also increases the likelihood that a firm is preparing for future climate change
- The finding lends support to the strategy of many development agencies who use adaptation to current climate variability as a way of building resilience to future climate change
 - In a gender-inclusive way

Thank you

Queries at: <u>S.M.Eskander@lse.ac.uk</u>

Chris M. Boyd @cmarib

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Climate, Mothers' Time-Use, and Child Nutrition: Evidence from Rural Uganda

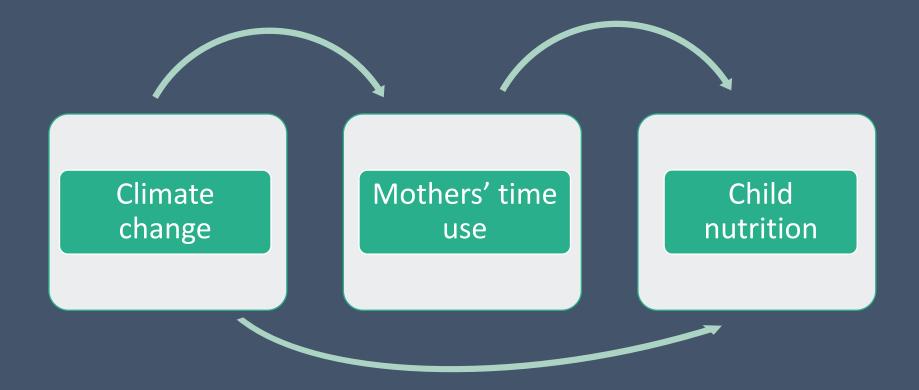
Luskin Center for Innovation

Climate, Mothers' Time-Use, and Child Nutrition: Evidence from Rural Uganda

Chris M. Boyd University of Minnesota

Climate Adaptation Research Symposium 2021 September 8, 2021

Motivation


- Differential impacts of climate change on men and women (Sachs 1996, Udry 1996, Bryan et al. 2017)
- Impact of climate change on rural families focused on farm production but not on labor (Lee et al. 2021)

• Increasing literature on the impacts of climate change on child nutrition, in the short and long run

Motivation

- Only a few papers explored the mechanisms of this relationship (Omiat & Shively 2020, Tiwari et al. 2017)
- Besides the disease and the food-production mechanisms, other mechanisms not studied, e.g., role of mother's time use (Bryan et al. 2017)
- Role of women as intermediaries between agriculture and nutrition lacks study

Research question

Theoretical Framework

• I extend Omiat & Shively 2020, Tiwari et al. 2017, and define:

$$C_{t} = C_{t}(P_{t}(R_{t}, R_{t-1}, L_{t}^{fp}, L_{t-1}^{fp}), F_{t}, L_{t}^{hw})$$

 $D_t = D_t(R_t, L_t^{nw}, L_t^{onw}(R_t))$

Theoretical Framework

$$H_{t} = f(H_{t-1}, C_{t}\left(P_{t}\left(R_{t}, R_{t-1}, L_{t}^{fp}, L_{t-1}^{fp}\right), F_{t}, L_{t}^{hw}\right),$$

$$\max_{L_{t}^{fp}, L_{t}^{hp}, L_{t}^{hw}, L_{t}^{ohw}, L_{t}^{m}} D_{t}(R_{t}, L_{t}^{hw}, L_{t}^{ohw}(R_{t})))$$

subject to:

$$p_t P_t + w_t \left(L_t^{lfp} + L_t^m - L_t^{fp} - L_t^{hw} - L_t^{ohw} - L_t^l \right) + \overline{W_t} \le S_t$$
$$L_t^T = L_t^{fp} + L_t^{lfp} + L_t^{hw} + L_t^{ohw} + L_t^m + L_t^l$$

Data

- Climate Hazards Group InfraRed Precipitation with Station data (CHIRPS)
 - High resolution data (0.05° x 0.05°, approximately 5km)
- CHIRPS monthly **rainfall** aggregated at the parish level

Map 1. Uganda: Rainfall (mm) by Parish, January 2016 Legend Rainfall (mm) 2 - 1516 - 2526 - 3637 - 4748 - 57 58 - 68 69 - 79 80 - 91 92 - 107 108 - 146 Lakes Source: CHIRPS

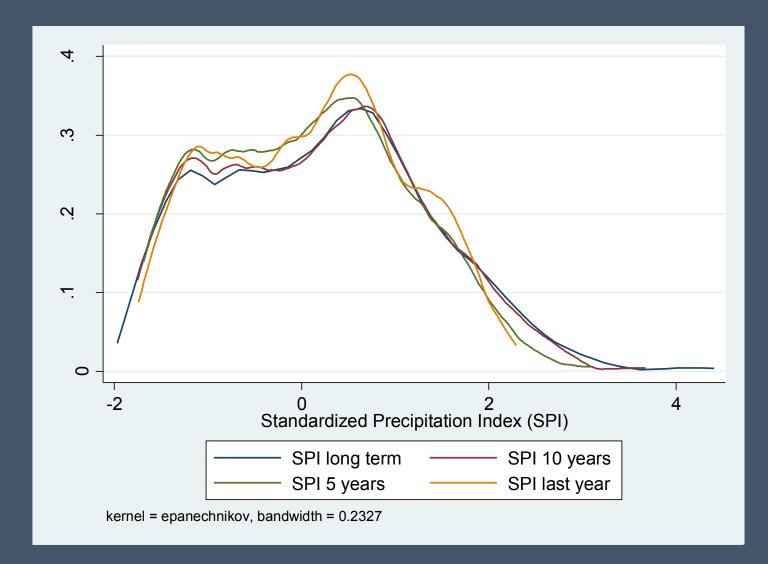
Data

- Living Standards Measurement Study – Integrated Surveys on Agriculture (LSMS – ISA) / UNPS
- Two panel waves: 2013-2014 and 2015-2016

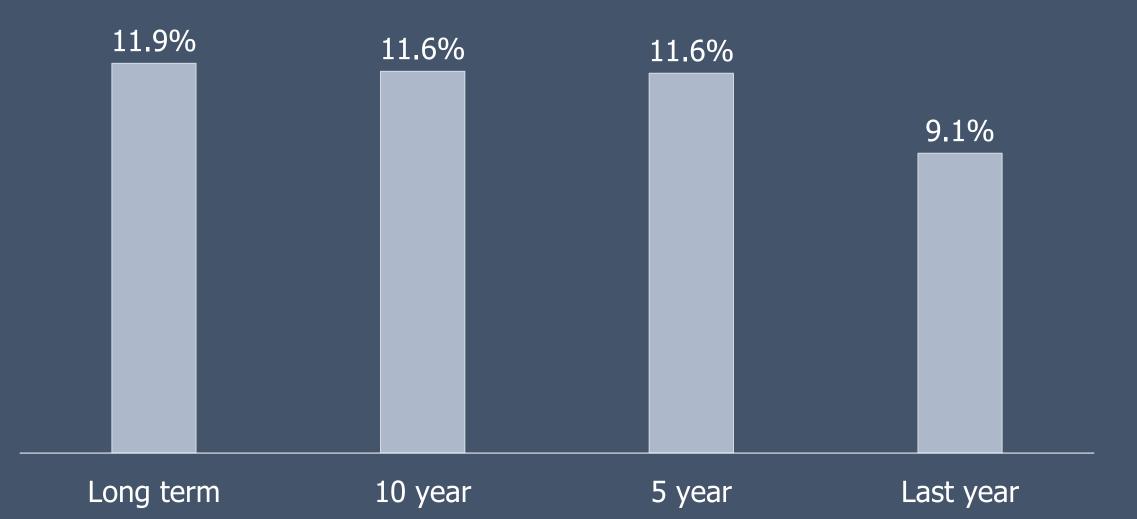
488 kids + 287 kids 382 kids + 488 kids (in 754 unique agricultural households & are in both waves)

pooled: 1,645 obs. kids under 5

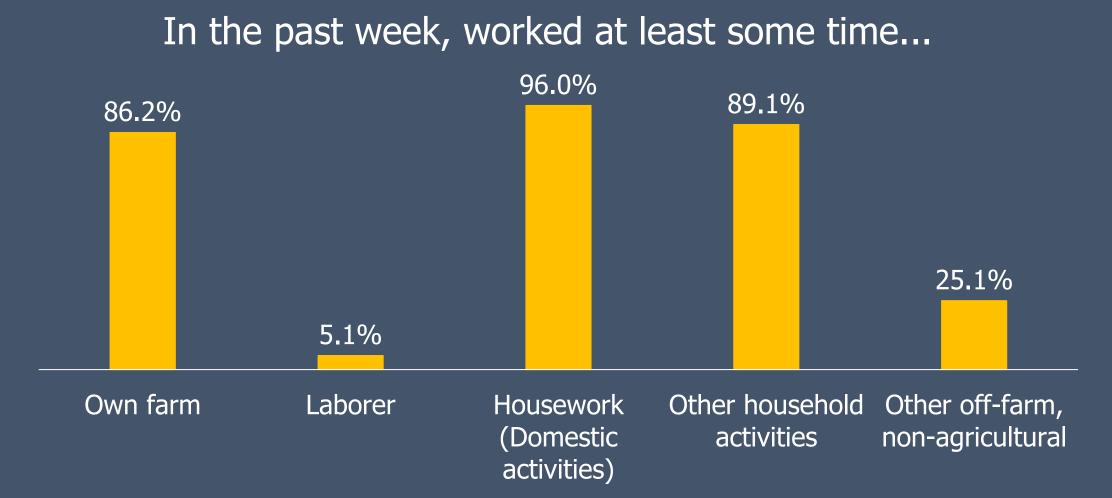
&

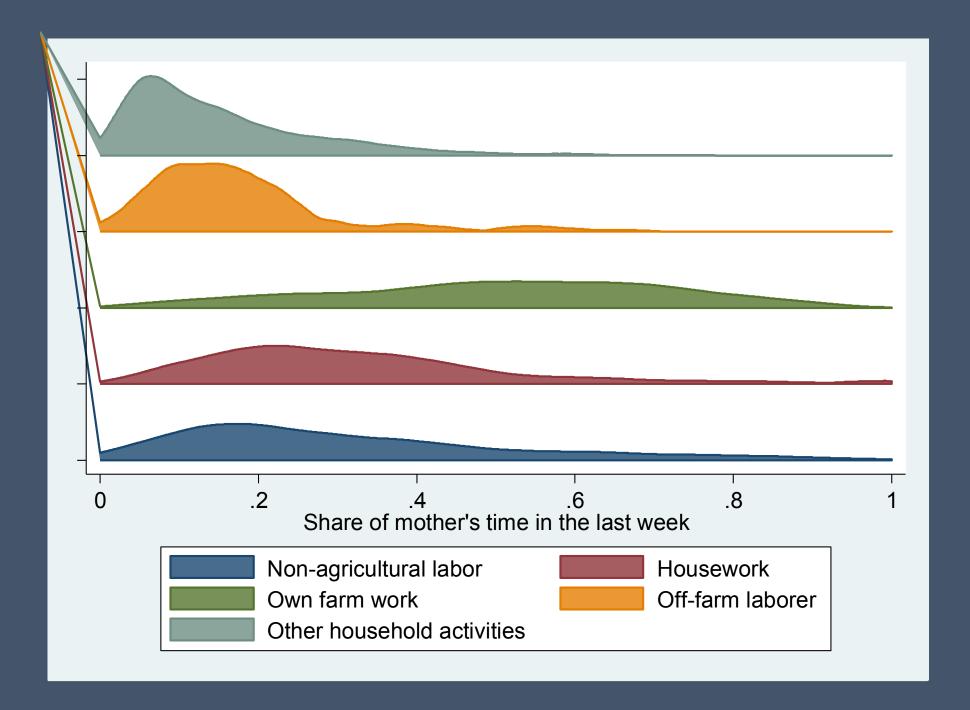

2013-2014

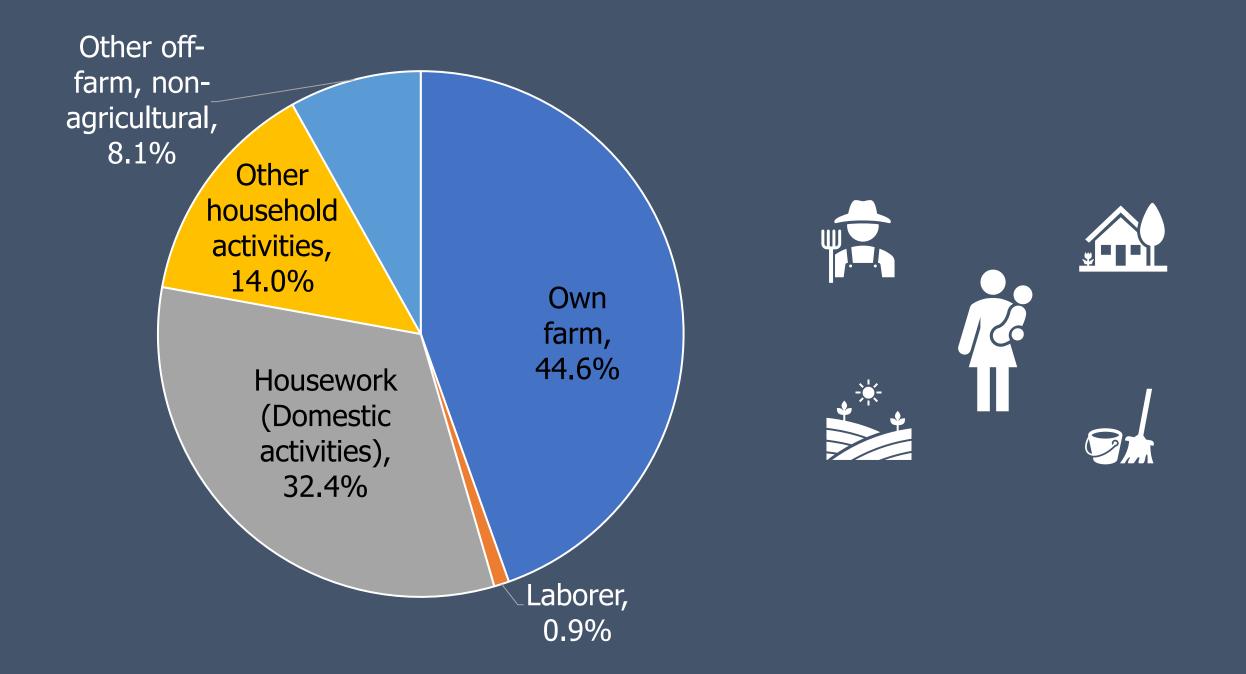
2015-2016

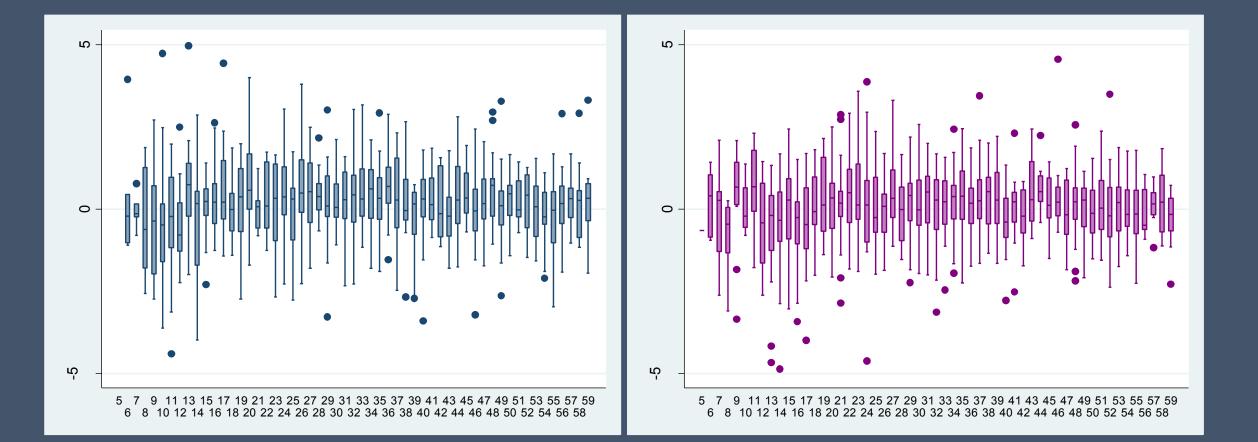

Methodology

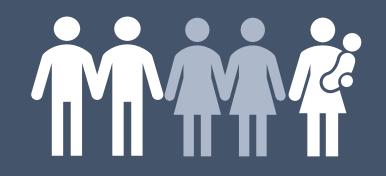
- Two-way fixed effects
 - What is the impact of climate change on child nutrition?
 - What is the impact of climate change on mother's time use?
- Mediation analysis (Acharya et al. 2016):
 - Is mother's time-use a mediating factor between weather variation and child nutrition?


Descriptive stats – Rainfall variation




Drought as SPI<-1.3, with respect to,...


Descriptive stats – Mother's time-use



Descriptive statistics – Child nutrition

Descriptive stats - Controls

Agricultural household with at least one child under 5 years old

- Family size > 6
- Mothers ~ 1
- Children under 5 ~ 1
- Elders: 0.2
- Childless women: 2.2
- Multi-generational: 30%
- Mother in polygamous union: ~ 20%

Descriptive statistics

• 8.4 months without enough food to feed the household

 94% of households grow food crops (maize, beans, peas, potato, cassava)

	Time share spent by mother										
	Workin	g at the			On do	omestic	On other	On other household		On other non-	
	farm		As a la	borer	acti	vities	activities		agricultural activities		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Panel A. Drought occurrence											
Drought w.r.t.	-0.004	0.004	0.021**	0.022*	0.009	-0.005	0.030	0.022	-0.056*	-0.042	
long run (=1)	(0.071)	(0.050)	(0.010)	(0.011)	(0.065)	(0.049)	(0.027)	(0.027)	(0.032)	(0.032)	
R-squared	0.103	0.541	0.064	0.208	0.083	0.434	0.139	0.256	0.052	0.338	
Drought w.r.t. 5-	0.027	0.019	0.006	0.004	0.017	0.029	0.017	0.005	-0.067**	-0.056*	
year (=1)	(0.067)	(0.048)	(0.017)	(0.020)	(0.059)	(0.047)	(0.026)	(0.026)	(0.031)	(0.030)	
R-squared	0.103	0.541	0.055	0.200	0.083	0.435	0.137	0.255	0.054	0.341	
Drought w.r.t.	-0.020	-0.041	0.006	0.006	0.071	0.034	0.004	0.008	-0.061	-0.008	
last-year (=1)	(0.089)	(0.053)	(0.008)	(0.008)	(0.085)	(0.060)	(0.034)	(0.036)	(0.040)	(0.036)	
R-squared	0.103	0.542	0.055	0.201	0.085	0.435	0.136	0.255	0.051	0.336	
Observations	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	
N. Households	754	754	754	754	754	754	754	754	754	754	
Child, Mother, &											
HH Controls	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	

	Time share spent by mother										
	Workin	ig at the			On do	omestic	On other	household	On other non-		
	fa	farm		As a laborer		vities	activities		agricultural activities		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Panel A. Drought	occurrer	nce									
Drought w.r.t.	-0.004	0.004	0.021**	0.022*	0.009	-0.005	0.030	0.022	-0.056*	-0.042	
long run (=1)	(0.071)	(0.050)	(0.010)	(0.011)	(0.065)	(0.049)	(0.027)	(0.027)	(0.032)	(0.032)	
R-squared	0.103	0.541	0.064	0.208	0.083	0.434	0.139	0.256	0.052	0.338	
Drought w.r.t. 5-	0.027	0.019	0.006	0.004	0.017	0.029	0.017	0.005	-0.067**	-0.056*	
year (=1)	(0.067)	(0.048)	(0.017)	(0.020)	(0.059)	(0.047)	(0.026)	(0.026)	(0.031)	(0.030)	
R-squared	0.103	0.541	0.055	0.200	0.083	0.435	0.137	0.255	0.054	0.341	
Drought w.r.t.	-0.020	-0.041	0.006	0.006	0.071	0.034	0.004	0.008	-0.061	-0.008	
last-year (=1)	(0.089)	(0.053)	(0.008)	(0.008)	(0.085)	(0.060)	(0.034)	(0.036)	(0.040)	(0.036)	
R-squared	0.103	0.542	0.055	0.201	0.085	0.435	0.136	0.255	0.051	0.336	
Observations	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	
N. Households	754	754	754	754	754	754	754	754	754	754	
Child, Mother, &											
HH Controls	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	

	Time share spent by mother											
	Workin	g at the			On do	omestic	On other	household	On other non-			
	fa	farm		aborer	acti	vities	activities		agricultural activities			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)		
Panel A. Drought occurrence												
Drought w.r.t.	-0.004	0.004	0.021**	0.022*	0.009	-0.005	0.030	0.022	-0.056*	-0.042		
long run (=1)	(0.071)	(0.050)	(0.010)	(0.011)	(0.065)	(0.049)	(0.027)	(0.027)	(0.032)	(0.032)		
R-squared	0.103	0.541	0.064	0.208	0.083	0.434	0.139	0.256	0.052	0.338		
Drought w.r.t. 5-	0.027	0.019	0.006	0.004	0.017	0.029	0.017	0.005	-0.067**	-0.056*		
year (=1)	(0.067)	(0.048)	(0.017)	(0.020)	(0.059)	(0.047)	(0.026)	(0.026)	(0.031)	(0.030)		
R-squared	0.103	0.541	0.055	0.200	0.083	0.435	0.137	0.255	0.054	0.341		
Drought w.r.t.	-0.020	-0.041	0.006	0.006	0.071	0.034	0.004	0.008	-0.061	-0.008		
last-year (=1)	(0.089)	(0.053)	(0.008)	(0.008)	(0.085)	(0.060)	(0.034)	(0.036)	(0.040)	(0.036)		
R-squared	0.103	0.542	0.055	0.201	0.085	0.435	0.136	0.255	0.051	0.336		
Observations	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645		
N. Households	754	754	754	754	754	754	754	754	754	754		
Child, Mother, &												
HH Controls	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes		

	Time share spent by mother										
	Workin	g at the			On do	omestic	On other	household	On other non-		
	farm		As a la	aborer	acti	vities	activities		agricultural activities		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Panel B. Rainfall i	ndex										
SPI (SD from long	-0.012	-0.013	0.002	0.004	0.031	0.044*	-0.024**	-0.024**	0.003	-0.011	
run rainfall mean)	(0.027)	(0.020)	(0.004)	(0.004)	(0.025)	(0.023)	(0.012)	(0.011)	(0.019)	(0.015)	
R-squared	0.103	0.541	0.055	0.202	0.087	0.441	0.145	0.262	0.047	0.337	
SPI (SD from 5-	-0.012	-0.007	0.002	0.003	0.030	0.040*	-0.023*	-0.023*	0.004	-0.013	
year mean)	(0.029)	(0.022)	(0.005)	(0.005)	(0.027)	(0.024)	(0.013)	(0.013)	(0.021)	(0.017)	
R-squared	0.103	0.541	0.055	0.201	0.085	0.439	0.143	0.260	0.047	0.337	
SPI (SD from last	-0.008	0.011	0.002	0.003	0.053*	0.049**	-0.035**	-0.037**	-0.012	-0.026	
year mean)	(0.033)	(0.024)	(0.007)	(0.006)	(0.029)	(0.024)	(0.015)	(0.015)	(0.025)	(0.020)	
R-squared	0.103	0.541	0.055	0.201	0.090	0.439	0.148	0.265	0.047	0.339	
Observations	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	
N. Households	754	754	754	754	754	754	754	754	754	754	
Child, Mother, &											
HH Controls	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	

	Time share spent by mother										
	Workin	g at the			On do	omestic	On other household		On other non-		
	farm		As a laborer		acti	vities	activities		agricultural activities		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
Panel B. Rainfall i	ndex										
SPI (SD from long	-0.012	-0.013	0.002	0.004	0.031	0.044*	-0.024**	-0.024**	0.003	-0.011	
run rainfall mean)	(0.027)	(0.020)	(0.004)	(0.004)	(0.025)	(0.023)	(0.012)	(0.011)	(0.019)	(0.015)	
R-squared	0.103	0.541	0.055	0.202	0.087	0.441	0.145	0.262	0.047	0.337	
SPI (SD from 5-	-0.012	-0.007	0.002	0.003	0.030	0.040*	-0.023*	-0.023*	0.004	-0.013	
year mean)	(0.029)	(0.022)	(0.005)	(0.005)	(0.027)	(0.024)	(0.013)	(0.013)	(0.021)	(0.017)	
R-squared	0.103	0.541	0.055	0.201	0.085	0.439	0.143	0.260	0.047	0.337	
SPI (SD from last	-0.008	0.011	0.002	0.003	0.053*	0.049**	-0.035**	-0.037**	-0.012	-0.026	
year mean)	(0.033)	(0.024)	(0.007)	(0.006)	(0.029)	(0.024)	(0.015)	(0.015)	(0.025)	(0.020)	
R-squared	0.103	0.541	0.055	0.201	0.090	0.439	0.148	0.265	0.047	0.339	
Observations	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645	
N. Households	754	754	754	754	754	754	754	754	754	754	
Child, Mother, &											
HH Controls	No	Yes	No	Yes	No	Yes	No	Yes	No	Yes	

Results – Rainfall on time-use

- Rainfall variation does not significantly impact mother's time-use in own-farm agriculture
- A meteorological drought **increases** time share as a laborer (2%) and **decreases** the time share in market activities (6%)
- Drier weather decreases time share in domestic activities (4%) and increases the time share in other household activities (3%)

Impact of rainfall variability on child nutrition										
			Under-	Under-						
			weight	weight			Wasting	Wasting		
	WAZ	WAZ	(=1)	(=1)	WHZ	WHZ	(=1)	(=1)		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)		
Panel A. Drought occurrence										
Drought w.r.t.	-0.258	-0.202	0.034	0.048	-0.840*	-0.554*	0.060	0.035		
long run (=1)	(0.218)	(0.168)	(0.058)	(0.066)	(0.458)	(0.289)	(0.053)	(0.044)		
R-squared	0.044	0.123	0.074	0.131	0.041	0.100	0.034	0.125		
Drought w.r.t. 5-	-0.261	-0.205	0.034	0.056	-0.808*	-0.551**	0.058	0.036		
year (=1)	(0.201)	(0.156)	(0.053)	(0.059)	(0.424)	(0.270)	(0.049)	(0.041)		
R-squared	0.044	0.123	0.074	0.131	0.041	0.101	0.034	0.125		
Drought w.r.t.	-0.160	-0.068	0.114	0.092	-0.148	-0.146	-0.012	-0.012		
last-year (=1)	(0.191)	(0.203)	(0.072)	(0.071)	(0.277)	(0.289)	(0.051)	(0.051)		
R-squared	0.043	0.122	0.076	0.132	0.030	0.096	0.032	0.124		
Observations	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645		
N. Households	754	754	754	754	754	754	754	754		
Child, Mother, &										
HH Controls	No	Yes	No	Yes	No	Yes	No	Yes		

Impact of rainfall variability on child nutrition											
			Under-	Under-							
			weight	weight			Wasting	Wasting			
	WAZ	WAZ	(=1)	(=1)	WHZ	WHZ	(=1)	(=1)			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
Panel B. Rainfall index											
SPI (SD from long	0.109	0.181*	-0.068*	-0.062*	-0.049	-0.080	0.018	0.028			
run rainfall mean)	(0.101)	(0.103)	(0.036)	(0.037)	(0.155)	(0.145)	(0.031)	(0.029)			
R-squared	0.044	0.127	0.080	0.135	0.029	0.096	0.033	0.126			
SPI (SD from 5-	0.089	0.152	-0.067*	-0.058	-0.052	-0.080	0.020	0.030			
year mean)	(0.106)	(0.108)	(0.040)	(0.041)	(0.174)	(0.160)	(0.035)	(0.031)			
R-squared	0.043	0.125	0.079	0.134	0.029	0.096	0.033	0.126			
SPI (SD from last	0.076	0.125	-0.089**	-0.068	-0.120	-0.151	0.019	0.020			
year mean)	(0.108)	(0.114)	(0.043)	(0.044)	(0.184)	(0.172)	(0.038)	(0.032)			
R-squared	0.043	0.124	0.081	0.134	0.030	0.097	0.033	0.125			
Observations	1,645	1,645	1,645	1,645	1,645	1,645	1,645	1,645			
N. Households	754	754	754	754	754	754	754	754			
Child, Mother, &											
HH Controls	No	Yes	No	Yes	No	Yes	No	Yes			

Results – Rainfall on child health

- Meteorological droughts are only negatively related to WHZ
- Drier weather is positively related with being underweight (WAZ<-2)

Mediation Analysis: Impact of rainfall variability on the probability of being underweight											
			Unde	erweight (=1)							
	(1)	(2)	(3)	(4)	(5)	(6)					
		Sequential g	equential g-estimate, or Average Controlled Direct Effect (ACDE), demediating								
	Baseline		the effect of mother's time share								
	estimate	Working at		On domestic	On other	On other non-					
	estimate	the farm	As a laborer	activities	household	agricultural					
				activities	activities	activities					
SPI (SD from long run	-0.073**	-0.073**	-0.073**	-0.073**	-0.073**	-0.073**					
rainfall mean)	(0.037)	(0.037)	(0.037)	(0.037)	(0.037)	(0.037)					
Constant	-0.195	-0.170	-0.848***	-0.172	-0.391*	-0.111					
	(0.205)	(0.205)	(0.205)	(0.205)	(0.205)	(0.205)					
R-squared	0.081	0.081	0.081	0.081	0.081	0.081					
SPI (SD from last year	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**					
rainfall mean)	(0.043)	(0.043)	(0.043)	(0.043)	(0.043)	(0.043)					
Constant	-0.194	-0.175	-0.836***	-0.173	-0.385*	-0.096					
	(0.204)	(0.204)	(0.204)	(0.204)	(0.204)	(0.204)					
R-squared	0.081	0.081	0.081	0.081	0.081	0.081					
Observations	1,645	1,645	1,645	1,645	1,645	1,645					
Number of households	754	754	754	754	754	754					
Household Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes					

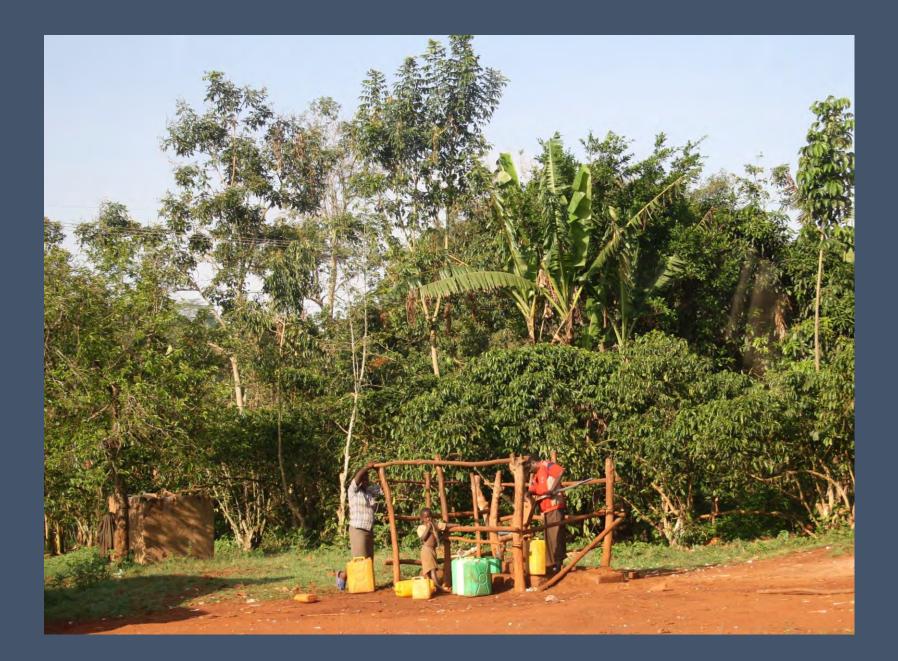
Mediation Analysis: Impact of rainfall variability on the probability of being underweight										
			Unde	rweight (=1)						
	(1)	(2)	(3)	(4)	(5)	(6)				
		Sequential g-	-estimate, or Av	erage Controlled	Direct Effect (AC	DE), demediating				
	Baseline	the effect of mother's time share								
		Marking at		On domestic	On other	On other non-				
	estimate	Working at	As a laborer	activities	household	agricultural				
		the farm		activities	activities	activities				
SPI (SD from long run	-0.073**	-0.073**	-0.073**	-0.073**	-0.073**	-0.073**				
rainfall mean)	(0.037)	(0.037)	(0.037)	(0.037)	(0.037)	(0.037)				
Constant	-0.195	-0.170	-0.848***	-0.172	-0.391*	-0.111				
	(0.205)	(0.205)	(0.205)	(0.205)	(0.205)	(0.205)				
R-squared	0.081	0.081	0.081	0.081	0.081	0.081				
SPI (SD from last year	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**	-0.092**				
rainfall mean)	(0.043)	(0.043)	(0.043)	(0.043)	(0.043)	(0.043)				
Constant	-0.194	-0.175	-0.836***	-0.173	-0.385*	-0.096				
	(0.204)	(0.204)	(0.204)	(0.204)	(0.204)	(0.204)				
R-squared	0.081	0.081	0.081	0.081	0.081	0.081				
Observations	1,645	1,645	1,645	1,645	1,645	1,645				
Number of households	754	754	754	754	754	754				
Household Fixed Effects	Yes	Yes	Yes	Yes	Yes	Yes				

Results – Time-use as a mediator

- Mediation analysis:
 - Accounting for mother's time-use variables do not change the direct relationship between rainfall variability and child nutrition
 - Mother's time-use does not seem to be an important mediator

Conclusion

In the short-run, drier weather:


- \varnothing farm work mothers' time share
- \downarrow housework
- \uparrow other household activities
- 1 laborer
- ↓ other off-farm non-agricultural work
- Negative relationship of rainfall variation/drought and child health in the short run

Conclusion

- Mother's time use does not appear to be a mediator
- Changes in mother's time-use respond to climate change, but as an adaptation mechanism to provide food/water to children.

Questions or comments?

Paul Stainier Ph.D. Student, UCLA Institute of the Environment and Sustainability

The Effects of Hot Weather on Rural Indian Diet Quality: A Focus on Iron

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Luskin Center for Innovation

The Effects of Hot Weather on Rural Indian Diet Quality: a Focus on Iron

Paul Stainier | UCLA Dr. Manisha Shah | UCLA

Nutrition and climate change in India

- India: 190 million undernourished people (FAO, 2021)
- 59% of Indian children anemic (NFHS, 2016)
- Iron deficiency decreases:
 - Energy levels
 - Learning in children
 - Productivity in adults

Nutrition and climate change in India

- 60% of Indians rely on agriculture for livelihood (Garg et al., 2020)
- Hot and dry weather lowers:
 - Crop yields (Taraz, 2018)
 - Incomes (Carpena, 2019)
 - O Diet quality (Carpena, 2019)

What we do and do not know

- Droughts lower diet quality (Carpena, 2019)
- Most prior work has focused on calories, protein (e.g. Carpena, 2019)
- Little evidence on other micronutrients and minerals
 - Our contribution: iron

 Does hot weather decrease iron consumption in rural India?

 Does hot weather decrease iron consumption in rural India? Yes, by more than calories

- Does hot weather decrease iron consumption in rural India? Yes, by more than calories
- Do these losses occur in households with already low levels of iron consumption?

- Does hot weather decrease iron consumption in rural India? Yes, by more than calories
- Do these losses occur in households with already low levels of iron consumption? Yes

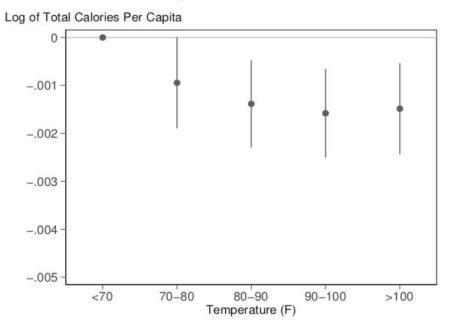
Data Sources: Nutrition and Yields

- National Sample Survey
 - Repeated cross-section of households in India
 - Sample: ~300k rural households
 - Last month's food consumption
 - 2003-2012 (last year of available data)
 - Iron content of NSS foods (Gopalan et al. 1989)
- International Crops Research Institute for the Semi-Arid Tropics:
 - Yearly crop yield data by district, 1981-2012

Data Sources: Weather from ERA5

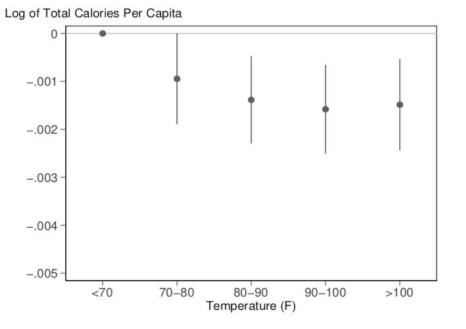
- Daily temperature and precipitation
- Separate the weather into growing (June -December) and non-growing (March-May) season
- Count the number of days in 10 degree bins
 Tmax<70F to Tmax>100F
- India is very hot:
 - 45% of districts have no days with Tmax <60F
 - 9% of districts have no days with Tmax < 70F

Empirical Strategy


- Dependent variables:
 - Yields (district-level)
 - Diet quality outcomes (household-level)
- Independent variables:
 - Number of days in temperature bins, rainfall controls (district-level)
 - Yields: this growing season temperature
 - Nutrition: last growing season temperature

Empirical Strategy

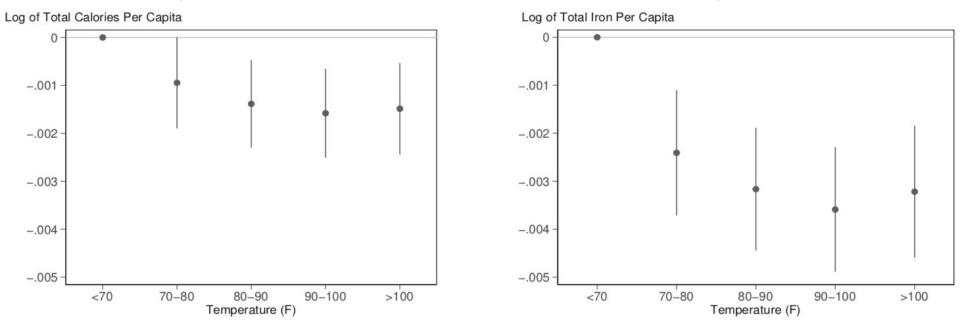
- Threats to causality: arbitrary relationships between temperatures and diet quality
 - e.g. Maybe hotter districts are also better fed on average
- We use district-month and year-month fixed effects


Calories and Iron Intake

A) Calories

Calories and Iron Intake

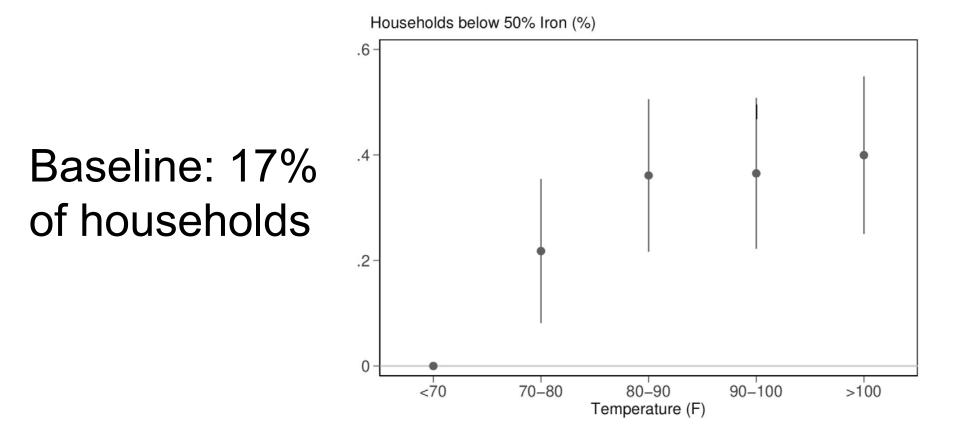
A) Calories



- 9 days/growing season > 100F
 O District range of 0 to 76
- 13 days/growing season < 70F
 District range of 0 to 214

Calories and Iron Intake

A) Calories

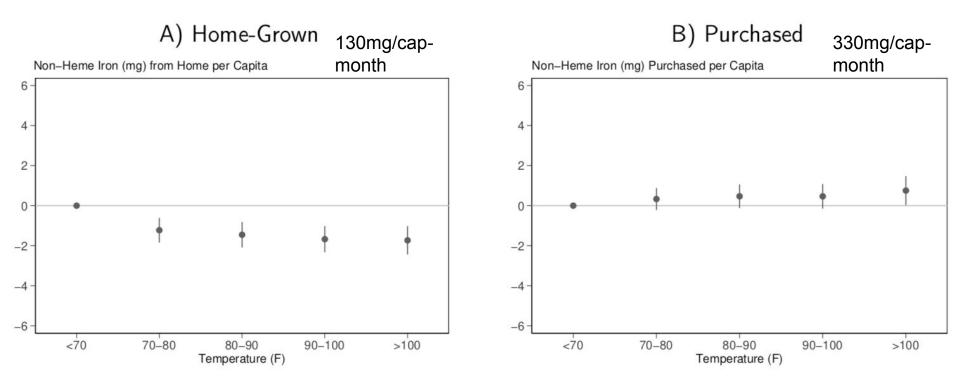


Hot weather decreases iron intake more than calories

Households below 50% Recommended Iron

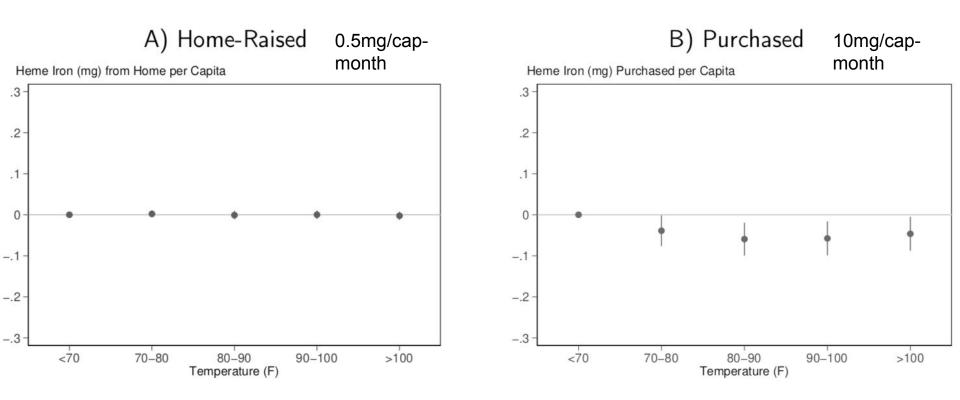
Baseline: 17% of households

Households below 50% Recommended Iron



4 Distinct sources of iron

	Home-Grown	Purchased
non-Heme	27.2%	70.7%
Heme	0.1%	2.0%


Heme iron (meat) more easily absorbed

Non-heme Iron per Capita

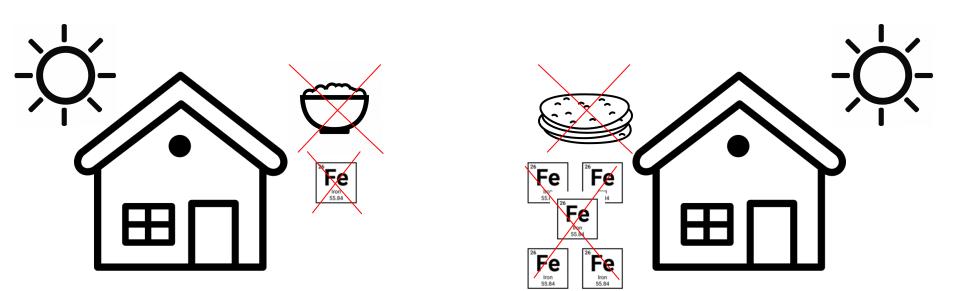
After a hot growing season, households lose home-grown crops, and partially make up for it with purchases.

Heme Iron per Capita

After a hot growing season, households buy less meat.

Wheat and Rice

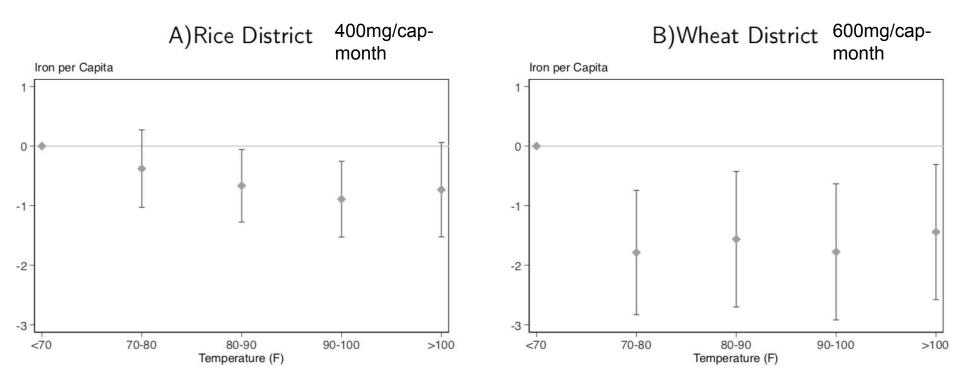
- Top 2 iron contributors in the sample
- Wheat: 49 mg iron/kg


• Rice: 10 mg iron/kg



Wheat and Rice

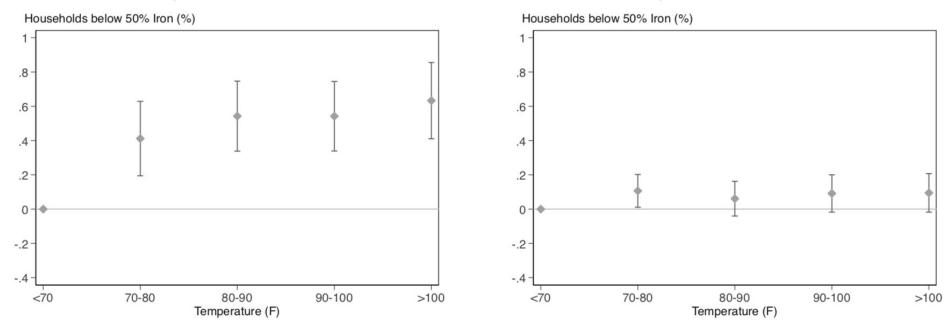
Where staple crop is wheat:
 Does iron intake drop by more?


Wheat Districts

Iron per Capita

A)Rice District 400mg/capmonth B)Wheat District 600mg/capmonth

Iron per Capita



Hot weather leads to larger average iron losses in wheat districts.

Below 50% Iron Adequacy

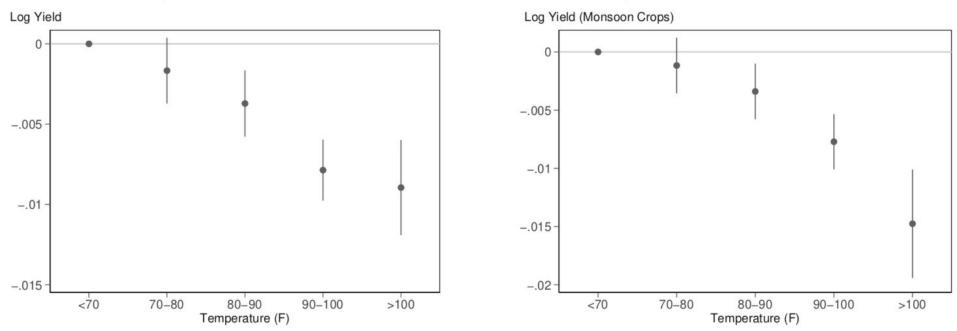
A)Rice District 23.2%

B)Wheat District 2.8%

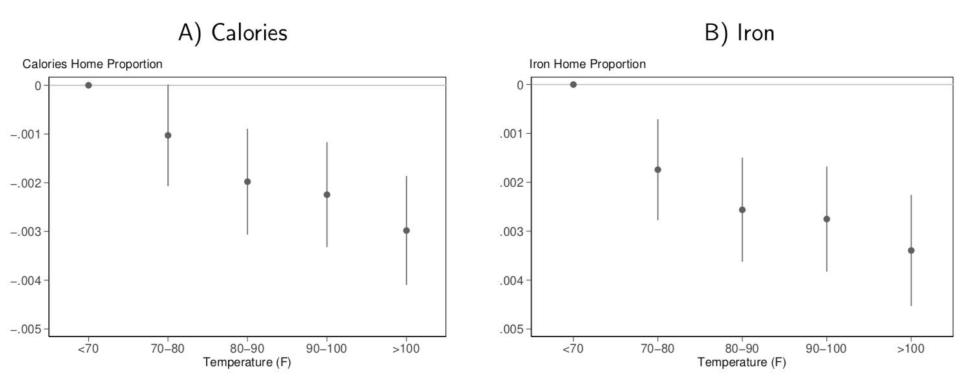
Hot weather leads to more households pushed below 50% in rice districts.

Major Takeaways

- One growing-season day above 100F lowers iron intake (0.3%) twice as much as calories (0.15%)
- The losses are primarily in home-grown crops
- Wheat districts lose twice as much iron per capita
- Rice districts have more households pushed below 50% threshold than wheat districts

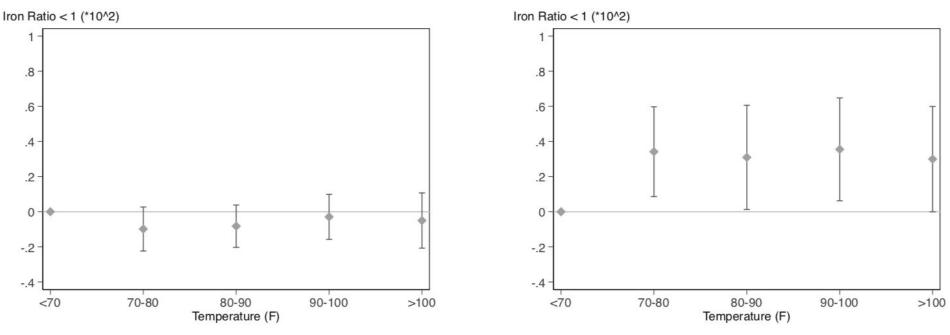

Thank you. Questions?

Thanks to Alan Barreca, Teevrat Garg, Vis Taraz, Manisha Shah

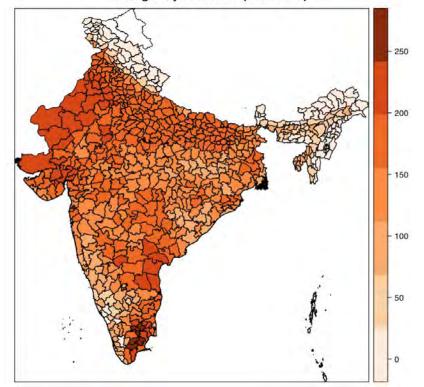

Yields

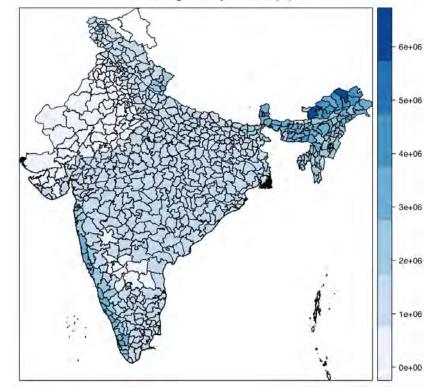
A) Top 6 Crops

B) Top 5 Monsoon Crops


Share of Food from Home

Below 100% Iron Adequacy





Summary Stats: ERA5

Average Days Above 90 (1998-2010)

Average Yearly Rainfall (m)

Home-grown vs. Purchased

- NSS data asks about home-grown vs. purchased food
 - e.g. "In last 30 days, we ate 17 bananas, 7 from home"
 - NSS assigns market value of food at point of production as "home-grown value"

Empirical Strategy

$$N_{hdmy} = \sum_{j=1}^{J} \beta_{1j} T_{1jdy} + \sum_{j=1}^{J} \beta_{0j} T_{0jdy} + \delta H + \beta_{prec,1} P_1 + \beta_{prec,0} P_0 + \gamma_{dm} + \tau_{ym} + \epsilon_{hdy},$$

N: nutritional outcome, h: household, d:district, y: year, m: month, T_{1j} : days in temperature bin for growing season (0 means non-growing season), H:household-level controls (social group, religion, education), γ :district-month fixed effect τ : year month fixed effect, ϵ : error term (clustered at district level)

Heme vs. non-heme iron


- Heme iron (meat) more easily absorbed
- For meat eaters: heme is 10-15% of iron intake, >40% of absorbed
- For my sample, heme is 2.7% of iron intake
 - \circ 4% for non-vegetarians
- Absorption is complex

Agricultural Mechanism: Yields and Iron Ratio < 0.5

Yields

Iron Ratio < 0.5

KEYNOTE ROUNDTABLE | 12:30-1:30PM PT

Setting the Research Agenda: Upcoming Priorities for Adaptation Researchers

Eleni Myrivili Chief Heat Officer City of Athens, Greece

Jonathan Parfrey

Executive Director, Climate Resolve

MEASURING & REDUCING SOCIETAL IMPACTS

Lauren Sanchez Senior Climate Advisor, Office of CA Governor Newsom

Luskin Center for Innovation

CLIMATE ADAPTATION RESEARCH SYMPOSIUM

MEASURING & REDUCING SOCIETAL IMPACTS

Thanks for tuning in!

Luskin Center for Innovation