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I nt I’Od u CtiO N Heatin the Atmosphere

* The atmosphere is mostly transparent
to short wave solar radiation

* The Earth surface emits long wave
radiation as a function of its temperature

* Greenhouse gases (GHG; H,0, CO,, CH,)
absorb and re-emit long wave radiation
in the atmosphere
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I nt rOd U CtiOn The Planetary Boundary Layer

"..is that part of the troposphere that is directly influenced by the presence of the earth’s surface” ( Stull, 1988 )
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I nt rOd U CtiOn The Greenhouse Effect

Increase in GHG concentration
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I nt rOd U CtiOn The Greenhouse Effect

Increase in GHG concentration

¥

Global Warming

¥

Climate Change
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From https://twitter.com/DrShepherd2013, 2021



I nt rOd U CtiOn The Greenhouse Effect

Increase in GHG concentration

¥

Global Warming
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Climate Change

From https://www.nasa.gov/
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I nt rOd u CtiO N climate Change Impacts

Heat
Waves
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I nt rOd UCt|O N Urban Environments

Share of the Urban Population Worldwide
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I nt rOd UCtion A matter of scale

Climate Change Urban Heat
Global Local
2 ¢
Mitigation Adaptation

(emission reduction) (impact reduction)



I nt rOd u CtiO N Heat Adaptation

NO HEAT ADAPTATION ) WITH HEAT ADAPTATION
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I nt rOd u CtiO N Heat Adaptation

Cool Roofs Green Roofs Street Trees
Increase Reflectivity Increase Evapotranspiration Shading + Evapotranspiration
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I ntrOd UCtion Air quality

Fertilizer

Oil & Gas Industry, Power Plants, Sewage Treatment

From https://www.nps.gov/subjects/air/sources.htm




I ntrOd u CtiO N Why this is important

No adaptation Heat adaptation




I ntrOd u CtiO N Why this is important




Some Physics



The Urban Boundary Layer (UBL)

Thermal anomalies

+ Anthropogenic heat

human metabolism, transportation,
manufacturing, heating/cooling systems

+ Paved impervious surfaces

4 heat storage >> 1 sensible heat (Qy)

& soil moisture >> ¥ latent heat (Qg)

¥ sky view factor >> @ canyon trapping
and venting

Aerodynamic anomalies

+ Building 3D morphology

4 roughness length (zp)
4 zero-plane displacement (zy)
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The Urban Boundary Layer (UBL)
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Our research question

What is the expected impact of heat adaptation on the UBL of American cities
in the context of projected climate change and urban development?



@ Springer Link

Published: 02 April 2021

Influence of projected climate change, urban
development and heat adaptation strategies on end of
twenty-first century urban boundary layers across the
Conterminous US

Aldo Brandi, Ashley M. Broadbent, E. Scott Krayenhoff & Matei Georgescu

Climate Dynamics (2021) | Cite this article
172 Accesses | 12 Altmetric | Metrics



Analysis domain and case study cities

From Brandi et al. 2021



Data & Methods

WRF-ARW V3.6
w/ Single Layer Urban Canopy Model

Spatial extent and resolution
North America, 20-km grid spacing, 29 vertical levels

Temporal extent and resolution

Contemporary (Climate and Urban Extent) = 2000 - 2009
Future (Climate and Urban extent) = 2090 - 2099
3-hourly outputs

Climate Forcing
Contemporary = ECMWEF ‘Era Interim’ Reanalysis
Future = CESM CMIP5 — RCP 8.5

Land Cover
EPA ICLUS 1.3.2 A2 SRES Scenarios (2010 and 2100)
3 Urban Classes - ICLUS 31, 32, 33
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w/ Single Layer Urban Canopy Model

Spatial extent and resolution
North America, 20-km grid spacing, 29 vertical levels
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Climate Forcing
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Future = CESM CMIP5 — RCP 8.5

Land Cover
EPA ICLUS 1.3.2 A2 SRES Scenarios (2010 and 2100)
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Full Adaptation Scenario
A combination of individual adaptation strategies

Cool Roofs
.88 albedo, uniformly applied on all roofs in the Contiguous US

Green Roofs
Evaporating surfaces with unlimited water availability,
uniformly applied on all roofs in the Contiguous US

Street Trees
2.0 m? m2Canyon Mean Leaf Area, distributed evenly
between heights 2.5 and 7.5 m in streets of all urban classes




Data & Methods

WRF-ARW V3.6
w/ Single Layer Urban Canopy Model

Spatial extent and resolution
North America, 20-km grid spacing, 29 vertical levels

Temporal extent and resolution

Contemporary (Climate and Urban Extent) = 2000 - 2009
Future (Climate and Urban extent) = 2090 - 2099
3-hourly outputs

Climate Forcing

Contemporary = ECMWEF ‘Era Interim’ Reanalysis
Future = CESM CMIP5 — RCP 8.5

Land Cover
EPA ICLUS 1.3.2 A2 SRES Scenarios (2010 and 2100)
3 Urban Classes - ICLUS 31, 32, 33

Full Adaptation Scenario
A combination of individual adaptation strategies

Cool Roofs
.88 albedo, uniformly applied on all roofs in the Contiguous US

Green Roofs
Evaporating surfaces with unlimited water availability,
uniformly applied on all roofs in the Contiguous US

Street Trees
2.0 m? m2Canyon Mean Leaf Area, distributed evenly
between heights 2.5 and 7.5 m in streets of all urban classes

More detailed information can be found in:

Krayenhoff E. S., Moustaoui M., Broadbent A. M., Gupta V.
and Georgescu M. (2018). Diurnal interaction between urban expansion,
climate change and adaptation in US cities. Nat. Clim. Change 8 1097

Data available at:

https://dataverse.asu.edu/dataverse/USRegClimateChgAssess

Georgescu, Matei; Brandi, Aldo; Broadbent, Ashley; Krayenhoff, Scott (2021)
"2090-2099 Projected Climates and Urban Development Scenarios - Conterminous U.S. (CONUS) Simulation
Data", https://doi.org/10.48349/ASU/3TYXZI, ASU Library Research Data Repository, V1
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Our research question

What is the expected impact of heat adaptation on the UBL of American cities
in the context of projected climate change and urban development?
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Full Adaptation
Cool R. + Green R. + Street Trees
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Full Adaptation
Cool R. + Green R. + Street Trees

Climate Change and Urban

Development impacts sum linearly

From Brandi et al. 2021
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Results wa - 14:00 msT)
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Results wa - 14:00 msT)

Full Adaptation
Cool R. + Green R. + Street Trees

Climate Change and Urban
Development impacts sum linearly

Full Adaptation UBL reduction
exceeds UD and CC increases

Greater impacts inland
Lesser in coastal cities

From Brandi et al. 2021
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Heat Adaptation Strategies
are expected to decrease
Urban Boundary Layer Depth



Results (a- 14:00 msT) Full Adaptation
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Results (a- 14:00 msT) Full Adaptation
Cool Roofs + Green Roofs + Street Trees
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Results (a- 14:00 msT) Full Adaptation
Cool Roofs + Green Roofs + Street Trees
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Results (a- 14:00 msT) Full Adaptation
ICLUS 2100 + CESM RCPS8.5 2090-2099 Cool Roofs + Green Roofs + Street Trees
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Results (a- 14:00 msT) Full Adaptation

ICLUS 2100 + CESM RCPS8.5 2090-2099 Cool Roofs + Green Roofs + Street Trees
New York City
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Results (a- 14:00 msT) Full Adaptation
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Conclusions (Brandi et al. 2021)

Urban Development (ICLUS 2100) and Climate Change (RCP8.5) are expected to increase UBL depth by tens of meters
= Impacts are greater in the eastern part of CONUS

Heat Adaptation strategies are expected to offset such increase and further reduce UBL depth by a few hundred meters

Heat Adaptation strategies are expected to increase both daytime and nighttime static stability near the surface

Background Climates modulate Urban Development and Heat Adaptation impacts on UBL dynamics
= Heat Adaptation impacts are greater inland and weaker over coastal cities
= In Southern California, adaptation induced latent heat increase may counterbalance sensible heat reduction impacts on UBL depth

Interaction between landscape change and background climate has important consequences on UBL dynamics

—_—

UBL depth . Potential for higher
. s Downward compression :
Static Stability = —— ) L »  pollutant concentration
of convective mixing _
Subsidence at pedestrian level

Need for thorough evaluation of tradeoffs between achieving thermal comfort and preserving air quality in
urban environments when designing and implementing landscape modifications
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Future work
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Future work
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Figure 2. Domain configurations for
ww the MPAS-WRF nested simulations:

a) approximate grid spacing for the
*™ rotated MPAS 60km-to-3km variable

resolution mesh centered at 36.6N,
*™ 112W. The bold rectangle indicates
” the parent WRF (DO1) domain. The

contour interval is 2km and the value
o, O the innermost contour inside the
rectangle is 2km; b) the parent WRF
domain (DO01) to be driven by MPAS
with a grid spacing of 3km. The bold
squares indicate the nested WRF
domains driven by domain DO1; ¢),
d), and e) are the nested WRF
domains D02, D03, and D04, centered
on Phoenix, Los Angeles and Denver,
respectively, with a gnd spacing of
 lkm. The shading in the WRF
- domains represents terrain elevation in

v units of kilometers; the filled black

circles superimposed in ¢) - ¢) denote
city centers.
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Air quality and Climate Change

More frequent stagnation events = Negative impact on local circulation systems

Projected higher temperatures will increase pollutant concentrations
Increased BVOCs (Biogenic Volatile Organic Compounds) emissions

Ozone (0Oj)

Facilitated photodissociation processes

Projected increase in methane (CH,) concentration
might overcome NO, reduction

Particulate Matter (PM, c — PM,)

Increased frequency and duration of wildfires

Persisting drought events = Soil erosion = Dust storms
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Air Pollution

Ozone (0Oj)

Photodissociation

NO, + hv - NO+O
0O+0,+M = 0O3+M

Mostly daytime reaction (needs UV radiation)
Favored by higher temperature

Powerful oxidant

Attacks C=C double bonds

abundant in rubber, plants, human body membranes,
especially in the lungs and the heart
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Air Pollution

Particulate Matter (PM, c — PM,)

Schematic representation of the size distribution of particulate matter in ambient
air (USEPA 1996) - "Chapter 7.3 Particulate Matter"
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Reducing heat-health risk using urban forestry and stakeholder engagement

September 8, 2021 | UCLA Climate Adaptation Research Symposium
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What I'll cover:

Urban forests and extreme heat

Challenges of urban forest stewardship

Behavior change study on urban forest stewardship
Preliminary findings

Next steps and implications

sl L



Urban forests and exireme heat

Hottest day in L.A. County’s recorded history:
on Sept. 6, 2020

Duplex with no trees or AC in Huntington Park:




Could changes we make to the urban environment
cool neighborhoods and save lives?
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We tested “prescriptions” of

W’
l TREE CANOPY

+

‘ SOLAR REFLECTANCE (ALBEDO)

of roofs & pavements

Low o Moderate . High



Summary of heat-health modeling results

Temperature reductions often exceeded 1.0°C (1.8°F),
and up to 2.0°C (3.6°F), a life or death difference

25%+ reductions in heat-related deaths are possible,
saving dozens of lives during the worst heat waves

Oppressive air masses could be shifted to more benign ones

Heat impacts of climate change could be delayed ~25-60+ years



If urban forest cover can cool neighborhoods,
why not just plant more trees?
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Challenges of urban forest stewardship

Rainfall averages and
patterns (young trees
must be watered!)

e A changing climate
e Pests

e Funding for planting vs.
establishment



Behavior change study on urban forest stewardship

e Can aresidential street tree stewardship program serve as a portal to increase
knowledge and action around heat-health risk?

e Does engagement tailored to the community lead to better outcomes than one that is
more generic?

e Are outcomes enhanced by message framing that emphasizes improvements to
environmental health rather than public health?

RESEARCH TEAM

Edith de Guzman | UCLA and LA Urban Cooling Collaborative

Dr. Erica Wohldmann and Delmy Martir | CSUN Funded by
Luis Rodriguez, Dr. Yujuan Chen, and Pam Gibson | TreePeople




Community Based Social Marketing (CBSM)

K13 SELECTING TARGET AUDIENCE AND BEHAVIORS

6 '@ IDENTIFYING BARRIERS & BENEFITS

o 54 DEVELOPING STRATEGIES

) PILOT TESTING

% EVALUATION & BROAD IMPLEMENTATION



L. IR a0 wdil et WA S
Selecting target audience & behaviors

“The public” is not an
audience.

AUDIENCE:

Residents whose home is
adjacent to a newly-planted
street tree in the City of San
Fernando

“Tree stewardship” is not
a behavior.

BEHAVIOR:
Check soil moisture - weekly
Water w/ 15 gal - as needed

(Behaviors should be end-state
and non-divisible)



Identifying barriers & benefits

M8 REVIEW THE LITERATURE
KEY FINDINGS

2 FOCUS GROUPS Trees are valued

Barriers to tree stewardship are
N SURVEYS mostly not structural

Perception that City is
responsible for care

Caring for trees is thought to be
expensive




Developing strategies

INSTRUCTIONAL PIECE
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Pilot testing

Generic packet

Previously used successfully
in smaller study in

Huntington Park, southeast
LA County

ENVIRONMENTAL HEALTH
GROUP

Messaging highlights link
between trees and
improved environmental
health

Tailored to San Fernando
community

\’

Messaging highlights link
between trees and
improved public health

Tailored to San Fernando
community



Pilot testing

ENVIRONMENTAL \’
HEALTH GROUP




Evaluation

12+ WEEKS OF OBSERVATION

Collect soil moisture readings
Observe presence of mulch
Observe presence of weeds
Rate tree health

Note other observed issues




Preliminary findings | VALUES AROUND TREES

Trees are highly valued, and environmental messaging helps to solidify that

Not at all
important

Extremely
important

Treas are important for human health N=83
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Strongly Strongly
disagree agree



Preliminary findings | PAYING FOR TREE CARE

Residents are less willing to pay for watering after program engagement

| would rather have a inea than a 35 monthly descount on my powear bill | o not wient 1o pay for the water neaded 1o care for a brea
Rairire sy . ot on R Baaswd boran ] Pow eseeveees hetviy
B T
Fownmeery Erorememsty N
—
B ] .
¥ i} [ T ¥ 5 T

Strongly Strongly Strongly Strongly
disagree agree disagree agree



Preliminary findings | RESPONSIBILITY

Belief that tree care is the city’s responsibility is weaker after program N=83
| ks the responsibility of the ity to cane for the trees thal line the streets Locus of Responsibility
Bwrisbes vy . Pt verime dusviry = . Foni-misreaniion surirg
i Wil

]

|

£ it Errmronmartsl

tlrnzam

== T

i : | - T

_ |

T
Strongly Strongly
disagree agree 100% mine 100% government

Question: Some people think it's mainly the government’s responsibility to help communities prepare
for a disaster or an emergency. Other people think that it's everyone’s responsibility. Using a scale of
1to 7, do you think it is mostly the government’s responsibility or mostly your own responsibility?



Preliminary findings | PROTECTIVE ACTIONS IN THE HEAT

Heat-Relajled Health Preveniative Arctions Takan

Bliinbirid §Urviy . P! -l 0wy
Public health messaging correlates

with more protective actions taken
Canirol Msssage ' during heat waves

—
—

Health Alegaage

N=83

Number of actions taken



Preliminary findings | SOIL MOISTURE

Environmental health messaging correlated with slightly higher soil moisture,
but soil moisture is often still too low for tree health N=115

=0l Moisiure

¥ —
Pris- b lssngen ien Fogl-lriereention Pogt- Inlprvontion
Basaling Fesund 1 Rioirsd 2

Soil moisture (%)

Pl " -l T ] 8
Moisture readings taken minimally once a week



Next steps

e Conclude survey data collection (pandemic-related delays)
e Collect additional soil moisture readings
e Conduct statistical analyses

e Compare to outcomes of prior pilot project



Implications

e In-person vs. passive engagement
e Generic messaging vs. tailored to the community

e Costs and benefits of community-based programs vs. hiring
crews



THANK YOU

...and please go water
a tree that needs it!

Edith de Guzman

eb3@ucla.edu | edithdeguzman.com
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Cities are hotter because of how we build them, and
they could be cooler it we build them differently

Reqgional Urban Heat
Island
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Cities are hotter because of how we build them, and
they could be cooler if we build them differently

Human Thermal Comfort

Micro conditions influence the
hl .m']‘l‘l::nt“r:illl;‘ll‘i:;l:;lr“ A'c IAAAt

. Outgoing
‘Longwave
Radiation

Incoming
Solar
Radiation

Mean Radiant Temperatures

Net thermal exchange between a body and the
objects that surround it.




|s surface temperature
a good proxy for
thermal comfort?

1. Diurnal variation?

2. Predicting simulated
temperature? (Compared to
sun exposure)

3. Relationship to land features?
(Compared to MRT)

The great divide in Tucson temperatures

Seven of the 10 hottest neighborhoods in fhe Tucson area wese found on the south side, a new study written by researchers al the
University of California-Diavis and Amencan Unversity of Beirul shows, The reseanchers (ook averages of satellite tlemperature
measurements over seven years o come up with mean temperatures for Tueson and 19 other Southwestern cities for both average
sumnmer days and days with extrerme heat

Summer land surface
temperatures® (F")
[ [F-rgtey
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*(a 3 awerage: hol sammer day .
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CIVANO (Tucson, AZ)

Approach to sustainable urbanism

Solar Energy, New Urbanism

Biophysical Context Arid
Development Type Public-private
Size (Acres) 1145

Number of Households at Build Out 2600
Development Start 1981




Comparing Measures of Temperature

Remote Sensing (RS)
* NAIP (9.6m Jun. 15 2019), Landsat (30m,
May 27, 2019)
« Land Cover Com\})osition and Configuration,
LST, Albedo, SAVI, LISA hotspots

Field Observations

 MaRTy cart 23 stop transects (May 25 2019),
7:00 —21:00 MST

« ST, AT, MRT

Micro-climate simulations
« ENVI-met
ST, AT, MRT

Regression models to examine predictive MaRTY — mobile biometeorology sensor —
power of climate variables Ariane Middel SHADE Lab at ASU



Civano = Cool ‘
Neighborhood Microclimate

* More vegetation...
...higher albedo...
...most ‘coldspots’

* Little variation in LST, mostly
desert ‘edge effect’

RS-LST at 10:00
* Min ~37C
« Max ~44 C
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Satellites provide weak estimate of simulated

temperature

Better predictor of MRT,
than AT and LST

Simulated
Temperatures

LST_08:00
LST_10:00
LST_12:00
LST_15:00
LST_20:00

MRT_08:00

MRT_10:00

MRT_12:00

MRT_15:00

MRT_20:00

AT_08:00
AT_10:00
AT_12:00
AT_15:00
AT_20:00
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RS-LST

R

-0.49

0.4
0.53

0.39
-0.72

0.65
0.63

0.63
0.64
-0.67
-0.1

0.17
0.25
0

-0.64

R2

0.24

0.16
0.28

0.16

0.52

0.42
0.4

0.39
0.41

0.45
0.01

0.03
0.06
0

0.41

simulated LST, MRT and AT at hour, all models are
significant at 0.001 level (2-tailed) except for AT_15.

10:00 RS image strong,
negative relationship with
evening temp



Sun exposure better predicts hyper-local

temperature

As expected, strong
relationship with MRT

Shortwave Radiation

Simulated
Temperatures

LST 08
LST_10
LST 12
LST_15
LST 20
MRT_08
MRT_10
MRT_12
MRT_15
MRT_20
AT_08
AT_10
AT 12
AT 15
AT_20

R

0.05

0.69
0.76

0.48
na
0.99

0.98
0.85

0.98
na
0.28

0.16
0.16

0.07

na

R2

0.003

0.47
0.58

0.23
na
0.98

0.96
0.73

0.97
na
0.08

0.03
0.03

0.01

na

Regression results between simulated shortwave
radiation and simulated LST, MRT and AT at hour i
at 30m resolution, all models are significant at 0.001
level (2-tailed) except for AT_08 and AT _15.

But also, variation in
midday surface
temperature

Source: The City of Melbourne via The Guardian 2017

B1.05C
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Different Urban Land Features Predict
LST and MRT

RS-LST Best Predictors MRT Best Predictors

 Stronger relationships overall * Weaker relationships overall

* Land cover variables * Morphology variables

* % building, % impervious, % * % trees, mean building and tree
trees height

* Relatively similar all day * Diurnal variation



Local heat planning needs nuance

 Define heat goal

...UHI mitigation # improved thermal
comfort

» Always specify temperature type

...especially what remote sensing :
estimates of LST can and can’t describe

* Ask when is space used

...interventions perform differently
throughout the day

7 . n s
L - R
;
oy
-

Top: Phoenix Cool Pavement parking lot, Bottom: Shade Sails for Schools in the U.K.
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Thank You!

Vkturner@ucla.edu

Ed Hawkins, #showyourstripes, mean temp deviation in CA 1985-2020



Up next — 3:30-5pm PT

SESSION 4.4
The Effects of Adaptation Quantifying and Integrating Climate
Temperatures on at Home: Minimizing Water and Transportation
Behavior Consumption, Quality Impacts Planning

Building Codes, and
Insurance
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