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Millions of homes are exposed to increasing flood risk

Source: The First Street Foundation
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Flood Risk and the Mortgage Market

• Flooding increases displacement,
delinquencies, and foreclosures

• Flood insurance protects against these
outcomes

• Yet, millions of risky properties uninsured -
why?

• Conventional explanations: imperfect
information, behavioral bias

• This Paper: low stakes in property leads to
under-insurance

Source: The New York Times
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Research Question and Approach

How and why does home equity affect flood insurance demand?

Model

• Defaulting after a flood provides high deductible implicit insurance

• The implicit insurance value is higher for homeowners with lower home equity

Empirical Analysis

1. A positive causal relationship between home equity and flood insurance demand

2. Mechanism tests support the role of default incentive (vs. liquidity constraints)
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Research Design

Setting: Flood insurance demand in the National Flood Insurance Program (NFIP)

- Quarterly panel of 271 MSAs, 2001-2017

Challenge: Home equity correlated with other determinants of flood insurance demand

Solution: Use sudden price variation in the housing booms of early 2000s as instruments

- Rapid land value appreciation caused increase in equity Home Prices & Equity

Econometrics: Instrumental variable + Difference-in-differences
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The Housing Booms
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The Housing Booms and Flood Insurance
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Empirical Strategy

Continuous treatment event study:

Ymt =
24∑

τ=−9

ατ (Postτmt ×∆Pm) + δ′Xmt + γm + γt + εmt

• Ymt : outcome of interest (e.g. log housing price index, log policy count)

• Post jmt : event time indicator, the j-th quarter after housing boom

• ∆Pm: structural break instrument

• Controls: income, home sales volume, population growth, employment rate, dynamic
effects of risk, recent flood claims, MSA and year fixed effects

⇒ ατ ’s flexibly capture the trajectory of the outcome of interest relative to the boom size
and start time in each MSA

- Identification relies on parallel trends in outcome absent the booms
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Structural Breaks and Home Price Dynamics
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Structural Breaks and NFIP Take-Up
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Other Findings

• This effect is not driven by

- SFHA insurance purchase mandate Non-SFHA Take-Up

- New construction Pre-2003 Buildings

- Renovations to existing buildings Coverage

• Other choice margins remain stable: deductible Show , contents Show

- Risk preferences and perceptions are stable across the boom-bust cycle

⇒ Housing booms affect flood insurance take-up primarily through housing prices
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2SLS Estimation

Dependent variable: log NFIP policy count

Policy Sample All SFHA Non-SFHA

(1) (2) (3)

̂log(HomePrice) 0.307∗∗∗ 0.213∗∗∗ 0.483∗∗∗

(0.077) (0.061) (0.154)

First-stage F-stat 39.10 52.59 36.76
Observations 15,112 15,112 15,112
Adjusted R2 0.991 0.992 0.979

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Magnitude:

• Effect of home prices ↑ 1% ≈
Effect of premium ↓ 2%

• Effect from a hurricane hit ≈
Effect of home prices ↑ 4.8%

A much larger effect for non-SFHA
policies
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Boom vs. Bust: First-Difference Regressions

Boom (2002-07) Bust (2007-12)

All Non-SFHA All Non-SFHA All Non-SFHA
2003-05 2003-05

(1) (2) (3) (4) (5) (6)

̂log(HomePrice) 0.334∗∗∗ 0.364∗∗ 0.384∗∗∗ 0.731∗∗∗ 1.369∗∗∗ 1.452∗∗∗

(0.110) (0.178) (0.117) (0.243) (0.302) (0.416)

Observations 250 250 250 250 250 250
First-stage F-stat 33.75 33.34 11.96 11.40 11.96 11.40
Adjusted R2 0.024 0.034 0.170 0.126 0.147 0.123

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

- The effect is larger during the bust than the boom

- Largest effects for low-equity homes consistent with implicit insurance mechanism
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Why does higher home equity increase insurance take-up?

Insurance demand model suggests two potential economic mechanisms and their predictions

Default Incentive: Lower implicit insurance value from defaulting

• Prediction 1: a larger effect in MSAs with lower transaction costs of default

• Prediction 2: a larger effect in MSAs with greater non-SFHA tail risk exposure Result

Liquidity: Higher home equity provides greater liquidity with refinancing

• Prediction: an increase in 1-year renewal rate at the beginning of the boom
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The Default Incentive Mechanism

• Prediction 1: a larger effect in states with judicial foreclosures
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Mechanism: 2SLS Estimates

Dependent variable: log NFIP policy count

Policy Sample Non-SFHA SFHA

(1) (2) (3) (4)

̂log(HomePrice) 0.355∗∗ 0.493∗∗∗ 0.231∗∗∗ 0.285∗∗∗

(0.147) (0.161) (0.067) (0.066)

̂log(HomePrice)× Judicial 0.383∗∗∗ −0.067
(0.122) (0.067)

̂log(HomePrice)× HighTailRisk 0.337∗∗ 0.107
(0.154) (0.078)

First-stage F-statistic (40.83, 94.55) (36.09, 92.43) (45.86, 93.88) (46.68, 86.08)
Observations 15,572 15,572 15,572 15,572
Adjusted R2 0.979 0.979 0.992 0.992

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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The Liquidity Mechanism

• Prediction: an increase in 1-year renewal rate at the beginning of the boom
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Conclusion

Findings

• New incentive-based explanation of the flood insurance gap: homeowners rely on
mortgage default as an implicit insurance

• Magnitude of the aggregate effect is substantial

Implications for Disaster Risk Management

• Some disaster risk gets transferred from homeowners to lenders, and ultimately to
taxpayers

• Moral hazard: distorted incentives to insure, adapt, and develop in risky areas

• Risk-induced property value depreciation can lower insurance demand

• Potential solutions should focus on reflecting the risk in the mortgage system, particularly
for homes outside 100-year floodplains
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Home Prices and Equity Comovement

Figure: Time series of national home prices and household home equity

Back
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Insurance Demand: Baseline Model

• Properties values structure S , land L, mortgage M and equity E = S + L−M

• Disaster probability 1− p, damages R ∈ R+ distributed f (R)

• Household income W , quasi-linear utility:

U(C )︸ ︷︷ ︸
consumption

+ W + E − R − C︸ ︷︷ ︸
period-end asset

• WTP for insurance P̂ is not affected by home equity:

P̂ = (1− p) · E(R)
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Insurance Demand With Liquidity Constraint

• Liquidity constraint on consumption and insurance spending

C + I · PI ≤W + δE

• New WTP when the constraint is binding:

P̂ ≈ ∆C · (1− U ′(C ′))︸ ︷︷ ︸
liquidity effect <0

+(1− p) · E(R)

⇒ The liquidity effect alleviates (WTP ↑) as equity increases
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Insurance Demand With Default

• Uninsured households can avoid paying R by giving up E and paying M̂

- Optimal for households with R > E + M̂

• New WTP:

P̂ = (1− p) ·

(
E −

∫ E+M̂

0

(E − r)f (r)dr +

∫ ∞
E+M̂

M̂f (r)dr

)

⇒ WTP increases with equity:

dP̂

dE
= (1− p) ·

(
1− F (E + M̂)

)
> 0

Back
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Results: Pre-Trend in Raw Data
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Results: Non-SFHA Take-Up
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Non-SFHA Take-Up Among Pre-2003 Buildings
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Results: Coverage
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Results: Deductible
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Results: Contents Coverage
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The Default Incentive Mechanism

• Prediction 2: a larger effect in MSAs with higher non-SFHA risk
(# non-SFHA properties at 1% annual risk/# of non-SFHA properties at any risk)
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Adapting to natural disasters: voluntary action
vs. mandated resilience

- Large-scale disasters are becoming more frequent due to climate
change and other factors.

- Losses can be reduced through adaptive investments, but takeup
may be complicated by risk misperception, spatial spillovers, and
emphasis on post-disaster aid.

- Growing federal and state initiatives to require or subsidize takeup
of mitigation investments.

- Limited evidence about the degree to which these programs
increase resilience relative to a counterfactual of voluntary
adoption.
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We consider wildfire building codes in California
- Wildfires have caused $40 billion of property damage in the United
States in the past 5 years, mostly in California.

Tubbs Fire, Santa Rosa, CA. Aerial imagery from NearMap.
4



We evaluate the effect of building codes on survival of
own- and neighboring structures.

- Assemble parcel-level damage data representing almost all U.S.
homes destroyed by wildfire since 2003.

- Merge to the universe of assessor data for destroyed and surviving
homes inside fire perimeters.

- Use differences in code requirements to measure the effects of
building codes on structure survival.

- Measure spillover benefits of mitigation for neighboring properties
due to reduced structure-to-structure spread.
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This study advances our understanding of disaster
mitigation in four ways.

1. We estimate policy effects.
- Previous literature measures technology effects (e.g., Gibbons et al,
2012; Syphard et al 2012; Syphard et al 2017).

2. First estimates of spatial externalities from mitigation.

3. Scale: Our estimates are based on data for almost all U.S. homes
experiencing wildfires since 2007.

- This new dataset is useful beyond this study.

4. We deploy an explicit empirical design.
- Previous literature is descriptive or relies on regression adjustment.
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Spatial externalities and myopia may limit investment
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Local governments may also face split incentives

- Hazard designations are unpopular with incumbent homeowners
- Local governments internalize a small share of mitigation benefits
(Baylis and Boomhower, 2019).

- Incomplete adoption of local govt FHSZ maps (Troy, 1998; Miller
et. al., 2020)
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California’s WUI code requirements depend on
jurisdiction and mapped fire hazard

Mandatory codes in all state-managed areas, with opt-in adoption in
local government areas (hundreds of municipalities and counties).
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The 1991 Oakland Firestorm catalyzed important
changes

- Mid-1990’s building code reforms
- A.B. 337, 1992 (“Bates Bill”)
- A.B. 3819, 1995 (Class A/B roofs required in high-hazard zones)
- A.B. 423, 1999 (outlaws untreated wood shingles on all homes)

- Strengthened via “Chapter 7A” requirements in 2008

- Standards have been mandatory in SRA, and opt-in in LRA
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We compile near-comprehensive data on U.S. homes
destroyed by wildfire over two decades.

- Censuses of damaged homes for 112 wildfires, 2003–2020.
- APN, street address, extent of damage.
- CAL FIRE for California 2013–2020.
- Individual county assessors for pre-2013 and other states.
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We merge to the universe of properties inside wildfire
perimeters and leverage additional spatial data.

- Property tax assessment data (ZTRAX)
- Universe of U.S. properties

- Year built, effective year built, assessed value by year, etc.
- Limit to single family homes inside wildfire perimeters.

- Merge to damage data based on assessor parcel number.

- Additional spatial datasets
- Parcel boundaries (county assessors).
- High-res aerial imagery to validate locations & damage reports.
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Summary of the final merged dataset (all states)
- 51,530 homes exposed to wildfires in CA, OR, WA, AZ.
- 41% destroyed.
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Aerial imagery validates rooftop locations.
Redding, CA before the Carr Fire (2018)
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Post-fire imagery validates damage reports.
Redding, CA after the Carr Fire (2018)
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Woolsey Fire (2018)
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Homes built after 1995 in mandatory code areas are
more likely to survive.

Mandatory Code Areas (SRA)
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Other home characteristics do not change in 1995.
Ground Slope
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Other home characteristics do not change in 1995.
Building Square Footage
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The empirical strategy compares survival for homes on
the same street built in different years.

1[Destroyed ]isf =
v=V

∑
v=v0

βv Dv
i + γsf + Xi α + εi (1)

- V vintage bins
- γsf are street-by-fire fixed effects
- Xi includes controls for ground slope, vegetation, building square
footage, and number of bedrooms.

1. Estimate Equation 1 separately by jurisdiction.
2. DiD specification that interacts vintage bins with jurisdiction.
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Vintage effects in mandatory code areas (SRA)
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Vintage effects in opt-in code areas (LRA-VHFHSZ)
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Vintage effects for other CA areas plus OR, WA, AZ

23



Difference in differences estimates
(1) (2)

Comparison Group × 1998–2007 -0.023 -0.009
(0.026) (0.026)

Comparison Group × 2008–2016 -0.003 0.019
(0.033) (0.038)

SRA × 1980–1997 -0.007 -0.046
(0.033) (0.041)

SRA × 1998–2007 -0.096∗∗∗ -0.137∗∗∗
(0.034) (0.042)

SRA × 2008–2016 -0.137∗∗∗ -0.187∗∗∗
(0.036) (0.043)

LRA VHFHSZ × 1980–1997 -0.024 -0.049
(0.032) (0.049)

LRA VHFHSZ × 1998–2007 -0.108∗∗∗ -0.140∗∗∗
(0.033) (0.048)

LRA VHFHSZ × 2008–2016 -0.144∗∗∗ -0.176∗∗∗
(0.037) (0.050)

Ground slope (deg) 0.005∗∗∗
(0.001)

Lot Size (Acres) -0.000
(0.000)

Building Square Feet -0.000
(0.000)

Bedrooms -0.000
(0.003)

Street FEs Yes Yes
Fuel Model FEs No Yes
Aspect FEs No Yes

Observations 48,213 38,386
R2 0.62 0.63
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Evaluating effects on structure to structure spread
Redding, CA: Carr Fire (2018)
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Evaluating effects on structure to structure spread
Santa Rosa, CA: Tubbs Fire (2017)
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Nearby pre-code neighbors increase loss risk
Regression estimates controlling for own structure age and street fixed effects.
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Total benefits calculation (Preliminary)

- We find a ~15-ppt decrease in own-structure risk and a ~2-ppt
decrease for near neighbors.

- Given existing estimates of mitigation costs and the value of
avoided damages, we can benchmark the cost effectiveness of
universal mitigation.

- Thought experiment: “What is the minimum annual probability of
wildfire exposure that makes WUI building codes cost effective?”
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Conclusion

- We assembled data on nearly all homes exposed to wildfires in the
United States during 2003–2020.

- We identify remarkable, non-linear vintage effects in survival for
California homes.

- We show that these effects are due to state and local building code
changes following the 1991 Oakland Firestorm.

- These preventive investments improve survival for neighboring
homes.

- Preliminary calculations suggest the building code mandate was
likely cost-effective.
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Motivation

• As the world has warmed, 
that warming has 
triggered many other 
changes to the Earth’s 
climate. 

• Over the last 50 years, 
the world has seen 
increases in prolonged 
periods of excessively 
high temperatures, heavy 
downpours, and in some 
regions, severe floods 
and droughts.

• NASA: Average temperature from 2013 to 2017, as compared 
to a baseline average from 1951 to 1980.



Motivation

• Existing studies document the negative impacts of temperature on economic growth as 
well as various channels of impacts.

• However, previous studies mostly focus on impacts from production sides and few 
studies explore the direct impact on consumption.

• The importance of consumption function in the macroeconomic literature.

Objective

• Quantify the direct impacts of temperature on consumption

• Identify the patterns of adaptation

• Predict the future impacts.



Selected Literature

• Economic growth: Nordhaus (2006) and Dell et al. (2012)

• Agriculture: Mendelsohn et al. (1994), Schlenker et al. (2005), Deschenes and 
Greenstone (2007) and Burke and Emerick (2016)

• Education: Zivin et al. (2020), Goodman et al. (2018) and Garg et al. (2018)

• Labor supply and productivity: Zivin and Neidell (2014), Sudarshan (2017) and 
Park and Behrer (2018)

• Mortality: Deschenes and Moretti (2009), Deschenes and Greenstone (2011), 
Barreca et al. (2016) and Heutel et al. (2020).

• Social conflict/civil war: Miguel et al. (2004), Jia (2014) and Hsiang et al. (2016)



Data

• Consumption: transactions of credit and debit cards in China from the UnionPay

network from 2013 to 2018. 
• The data are aggregated at the city by date level.

• Weather: ERA-Interim products from European Center for Medium-Range Weather 
Forecasts (ECMWF). 

• It provides daily weather information from 1979 to present at 79km-grid resolution.

• Climate Projections: NASA Earth Exchange Global Daily Downscaled Projections 
(NEX-GDDP), 21 GCM models at a spatial resolution of 0.25 degrees.

• Socioeconomic Projections: Shared Socioeconomic Pathways (SSPs). 



Data

Card Coverage: No. of Active Cards per Capita 2015



Baseline Model

• y is the value of transactions per card in city c at time (day) t.

• TP is separate indicators for each 5 F bin for average temperature from last 10 days (t to t-9). 
The reference categories are the bins that minimize/maximize the response function.

• Control for air pollution and other weather conditions, as well as city FE, date FE, city-by-year-
quarter FE, city-by-holiday FE.

• Standard errors are cluster at the city level.

(1)



Temperature Impact

Consumption Responses to Temperature Shocks



Temperature Impact

Consumption Responses by Hot, Mild, and Cold Regions



Long-run Projections with Adaptation

Model

CMc: 30-year average temperature from 1981 to 2010; 

GDPc: GDP per capita in 2010;

Carleton et al. (2020): Climate captures the adaptive behaviour through various channels 
and income reflects the budget constraint governing adaptation.

(2)



Long-run Projections with Adaptation

• No Adaptation,

• Intuitively,

Beijing’s climate                  Shanghai’s climate

• Adaptation,

Beijing’s CT relationship Shanghai’s CT relationship.



Long-run Projections with Adaptation

Current Consumption-temperature Relationship by City



End-of-Century Projections (2080-2099)

No Adaptation Adaptation



End-of-Century Projections, No Adaptation

RCP 4.5 RCP 8.5



End-of-Century Projections, Adaptation

RCP 4.5 RCP 8.5



Conclusions

Temperature Impacts: 

• Excess heat and cold have a direct and immediate negative effect on household 
consumption.

Adaptation Impacts: 

• Excess heat has the largest effect in cold regions but the smallest in hot regions. The 
opposite is true for excess cold.

Future Impacts (2080-2099): 

• Without adaptation, the end-of-century (2080-2099) consumption would observe a 
statistically and economically significant decrease under both RCP4.5 and RCP8.5 
scenario on an annual basis.

• With adaptation, the consumption impact is closer to zero and not statistically significant.
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Thanks for joining us!
The session will begin shortly. 

Thanks for tuning in!
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