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Introduction

• There is growing evidence that weather conditions can have significant implications to 
human health and well-being 

• As temperatures are predicted to continue rising over this centaury, it is important to 
understand what are the effects of warmer weather on the economy

• Bottom-Up
• Top-Down

• Previous studies have documented a negative link between high temperature and 
changes in aggregate economic production (e.g. GDP growth)

• The design of adequate policies and more precise estimates of the costs of higher 
temperature require a more detailed understanding of the link between temperature 
and economic activity across different industries and subnational geographies



In this Paper

• We examine the effects of temperature fluctuations on the growth rate of Gross-Value 
Added (GVA) across different industries and subnational regions in Europe

• Focus on heterogeneous responses to temperature shocks depending on the local 
climate and the persistence of these shocks

• we also look at spatial spillover effects, heterogeneity across seasons, and adaptation but I 
will not present it today

• Use rich socioeconomic and climate data of more than one thousand small 
administrative districts in Europe across industries

• We exploit year-to-year fluctuations of annual mean temperature within district 
across Europe



Preview of Results

• We find negative effects of warmer-than-average years on total economic output in 
relatively cold districts (annual mean temperatures < 13 degrees C)

• This effect is also persistent, reducing output in several consecutive years after an 
initial temperature shock

• We find little evidence for any effect of higher annual mean temperature on total 
economic output at annual mean temperatures above 13 degrees Celsius

• Examining individual industry groups, we show that the negative effect of higher 
annual mean temperatures on the growth rate of total is mainly coming form the 
following industries:  manufacturing, construction, agriculture, and mining and 
utilities
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Related Literature

• Macro Level: Several studies have examined the effect of 
annual mean temperature on aggregate economic output 
(Dell et al., 2014; Burke et al., 2015; Kalkuhl and Wenz, 
2020)

• Micro Level: this strand of literature has documented 
impacts of daily temperature levels on labour supply (Graff 
Zivin and Neidell, 2014), labour productivity (Behrer and 
Park 2020), health (Deschenes and Greenstone, 2011), and 
other socioeconomic outcomes (Carleton and Hsiang, 2016)

• Recently, evidence on the effects of temperature on 
productivity in China (Zhang et al., 2018) & India 
(Somanathan et al., 2018; Colmer, 2020), and a study on 
economic output across several industries in the US 
(Colacito et al., 2019)



Data

• We use data on GVA by industry from EUROSTAT and the OECD. The 
data is provided at the level of nuts-3 administrative districts in 
Europe (nuts-2 for Turkey) and the territorial 2 level of the OECD

• For data on temperature and precipitation we use high-resolution 
reanalysis data. The data is based on reanalysis of the ECMWF and 
spatially refined using the model COSMO. The data has a resolution 
of about 6 km. We aggregate it to administrative districts using 
gridded population data from the Gridded Population of the World 
dataset



Data

Temperature (C)GVA Per Capita



Empirical Strategy

• We estimate fixed-effects models with the growth rate of gross-value 
added (either total or for a specific industry) as our outcome variable 
and use polynomials of annual mean temperature as our treatment. 

• More formally, we estimate the following models: 



Main Results (1)



Main Results (2)



Main Results (3)



Main Results (4)



Conclusions

• We estimated the link between annual mean temperature and GVA 
across regions and industries in Europe. 

• Our study shows that in Europe the most important dimension of 
the temperature - economy relationship is the cost of warming in 
cold regions

• Importantly, we show that this effect is also persistent, reducing 
output in several consecutive years after an initial temperature 
shock

• In Europe (at least), some like it cold
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Motivations
• Climate change leads to more frequent and intense extreme weather events (IPCC, 2021) and 

growing world population => increasing concerns about food security

• Spillover effects in the Ricardian literature are often ignored
Mendelsohn et al. (1994); Deschênes and Greenstone (2007); Le (2009); Schlenker and Roberts 

(2009); Schlenker et al. (2005, 2006): ⁄𝜕y! 𝜕C! = β and   ⁄𝜕y! 𝜕C" = 0
Exceptions: Polsky (2004), Seo (2008), Dall’Erba and Dominguez (2015): ⁄𝜕y! 𝜕C" ≠ 0 (geography, 

trade, surface water)

• Spatial econometric work with endogenous W still uncommon and focus on time-invariant W
Kelejian and Piras (2014); Qu and Lee (2015); Bramoullé et al. (2009). 

• Int’l trade allows impacted countries to offset their own production losses with imports 
(Costinot et al. 2016; Reimer and Li, 2009; Schenker, 2013) but nothing at the domestic level



What percentage of the U.S. agricultural production is 
exported?
a) 11.1%
b) 21.1%
c) 41.1%

What percentage of the U.S. intermediate and final demand 
for agricultural goods is imported?
d) 8.3%
e) 28.3%
f) 48.3%

2014 data, WIOD (2016)



Introduction: Preview of Methods and Results

• The First Question / First stage (the sensitivity of trade flows to drought) 

o Structural gravity model (Anderson and Van Wincoop 2004, Eaton and Kortum 2003; Head and Meyers 
2014; Yotov et al. 2016, Reimer and Li 2009, Ferguson and Gars, 2017)

=> Exports are negatively affected by droughts in the origin state. 

=> Exports are positively affected by droughts in the destination state.

• The Second Question / Second stage (the sensitivity of agricultural profit to local and external droughts)

o SLX model: 𝑦!" = 𝛼 + 𝛽#𝑋!" + 𝛿$𝐷!" + 𝛿% ∑& *𝑊&" +𝜆! + 𝜂" + 𝜀!"
o Ricardian approach (Mendelsohn et al. 1994, Deschênes and Greenstone, 2007; Fisher et al. 2012)
Þ Profit increases when the trade partners experience a drought

Overall, trade more than offsets the negative impact of future weather conditions on 
profits. 4



Interstate Trade Flows: data sources and summary

Export_ratio ER! = 1 −
T!!
∑" T!"

Min. 1st.Qu Median Mean 3rd.Qu Max.

0.2544 0.5189 0.5189 0.5150 0.5923 0.8894

Import_ratio IR! = 1 −
T!!
∑" T"!

Min. 1st.Qu Median Mean 3rd.Qu Max.

0.1052 0.4273 0.5379 0.5120 0.6346 0.9592

Summary Statistics (average over the period)

• Freight Analysis Framework Version 4 (FAF4) of the Bureau of Transportation Statistics based on (CFS) Oak
Ridge National Lab

• Domestic trade flow data of major crops, fruits and vegetables (sum of SCTG section 2 and 3) measured in
1997, 2002, 2007, 2012

• Focus on US interstate trade because:
Crops, fruits and vegetables: 18% of the production is exported; 13% of the intermediate and final
consumption is imported (United Nations, 2017)
All agricultural commodities: 11.1% of the production is exported; 8.3% of the intermediate and final
consumption is imported (WIOD, 2016) – 8.8% and 8.1% including food manufacturing.



Interstate Trade Flows: Trade Volume (in 2012 prices)

2012 Agricultural Trade Flows2007 Agricultural Trade Flows

IL

MN

NBCA



Interstate Trade Flows: Trade Partners  

2012 Agricultural Trade Flows2007 Agricultural Trade Flows



Interstate Trade Flows: focus on Nebraska
2012 Agricultural Trade Flows (NE)2007 Agricultural Trade Flows (NE)

8



Drought: definitions and classifications



July 31st drought maps
(% of territory with PDSI <-3)

2007: 36.18% 2012: 70.85%

2002: 63.26%



Drought: data (NARR)
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From monthly PDSI data for each county c to yearly severe drought days of state s

This new variable reflects:
• Extensiveness: captured by weighting scheme.
• Severity: use (-3) as the cut-off to disregard moderate droughts.
• Timing: 𝑀$= all months; 𝑀%= months in growing season (April-Sept.); 𝑀== 3 months before harvest



Structural Gravity Model: reduced-form specification (Head and 
Meyers 2014; Yotov et al. 2016)

EX)*+ = 𝛼𝜄, + 𝐻--. 𝛽 + 𝐵𝑂𝑅𝐷𝐸𝑅-/. β0 +𝑇𝐼𝑀𝐸-/. β1 + 𝑌-2. β3 + Π-2. β4 +𝐸/2. β5 + 𝑃/2. β6

+ 𝐷𝐷-2. β7 + 𝐷𝐷/2. β8 + 𝑅-2. β9 + 𝑅/2. β0:+𝐷𝐺𝑇-2. β00 + 𝐷𝐺𝑇/2. β01 +ϵ)*+

with ϵ)*+ = 𝛾;< + 𝜇2 + 𝜀-2 or ϵ)*+ = 𝛾;< + 𝜏<2 + 𝜕;2+ 𝜀-2
t = year index (1997, 2002, 2007, 2012); n=9,216

EXijt = bilateral trade flow of crops, fruits, veggies from i to j (FAF4)

Hii= home state fixed effect BORDERij = 1 if exporter and importer are contiguous;

TIMEij= travel time by road (log);

Yit= agricultural GDP in exporter i (BEA) Π!" = (MLRT) exporter i’s ease of market access to all j;

Ejt= food manufacturing GDP in importer j (BEA); Pjt= (MLRT) importer j’s ease of market access from all 𝑖;

DD = growing season degree days: April-September (NARR); R= growing season rainfall (NARR)

DGT = severe drought days (NARR)

I, J = exporter (importer) climate zone index



9 U.S. Climate Zones (Source: NOAA)





Robustness checks
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Extensive margin

16



17

Intensive margin



§Different from the production function of one type of crop (McCarl et al., 2008; 
Lobell et al., 2008; Schlenker and Roberts, 2009). (“Dumb farmer”, Upper bound)

§Ricardian approach (“Clairvoyant farmer”. Lower bound). It accounts for 
adaptation and adjustment costs without modeling them explicitly (Mendelsohn 
et al., 1994).

Ricardian approach: Basic Principle



Ricardian approach: Basic Model

ag_pro'itN = XNOβ + ∑θPfP TNP + εN εN~N(0, σQR)

Control variables: 
Soil conditions and 
Human Intervention

Climate variables: many functional forms e.g.
quadrics average temp. and rainfall , degree-
days, temp. bins.

Dependent variable: agricultural 
profit
Can also be farmland	value

Vast literature on US agriculture only:

[Dep. Var.: Agricultural profit]

Kelly et al. (2005); Deschênes and Greenstone, (2007); Fisher et al. (2012).
[Dep. Var.: Farmland value]
Mendelsohn et al. (1994), Mendelsohn and Dinar (2003), Massetti and Mendelsohn (2011), Schlenker et al.
(2005, 2006). With spillovers: Polsky (2004), Dall’erba and Dominguez (2016)



Ricardian approach: specification

i = 48 states, I = 9 climate regions, t = 4 years (1997, 2002, 2007, 2012), n= 192

y = agricultural profit from crop, fruits, veggies production before subsidy [Census of Agriculture] (sales - costs)
SEX = (log of) predicted export from the first step

DGT = severe drought days [NOAA]

W = other weather variables: growing season degree days (and squared value), growing season rainfall (and
squared value) [NARR]

X = Other controls: (log of) per capita income, density, density% [BEA]

ν> = state FE

ν?@ = climate zone × year FE

y,- = #EX..01 𝜷 + 𝐷𝐺𝑇.01 𝜽 +𝑊,-
1δ + X,-1 γ + ν, + ν2- + ϵ,- ϵ,-~F(0, σ34)



OLS results



Ricardian approach: Marginal effects

• Marginal effects of drought on agricultural profits

owithout interstate trade:

⁄𝜕y, 𝜕DTG, = θ and                  ⁄𝜕y, 𝜕DTG5 = 0

owith interstate trade:

⁄𝜕y, 𝜕DTG, = θ + β ⁄×∑6 𝜕AX,5 𝜕DTG, and ⁄𝜕y, 𝜕DTG5 = β× B∑6 𝜕AX,5 𝜕DTG5

• Two benefits of introducing trade
o Spatial heterogeneity: droughts have different impacts on different places.

o Spatial spillover: drought in location i has an impact in other places j. 



23

Total effect on (local) profit / acre of one extra week of local severe drought: ⁄𝜕y# 𝜕DTG# = θ + β ⁄×∑$ 𝜕CX#% 𝜕DTG#
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Average effect on local profit /acre of one extra week of severe drought in the trade partners: ⁄𝜕y# 𝜕DTG% = β× E∑$ 𝜕CX#% 𝜕DTG%



• For temperature and precipitation, we use 4 combinations of RCM-
GCM: CRCM-CCSM, CRCM-CGCM, MM5I-CCSM and RCM3-GFDL

• GCMs are: the Community Climate System Model; the Third Generation 
Coupled Global Climate Model; the Geophysical Fluid Dynamics 
Laboratory. All based on the 4th IPCC’s SRES A2 scenario: 870ppm CO2 
and + 3.5°C by 2100.

• RCMs are: the Canadian Regional Climate Model (v.4); the Hadley Centre 
Regional Model (v.3); the Pen. State University NCAR Mesoscale Model.

• For drought, we use the future PDSI data of Dai and Zhao (2017). Have 
been used in Zhao and Dai (2017); Huang et al. (2017); Trenberth et al. 
(2017)

Ricardian approach: 
future weather conditions (2038-2070 w.r.t. 1968-2000)



Mitigation effect of interstate trade (average across models)

$ 14.5 billion mitigation effects of domestic trade: 
Projected change in profit with trade ($ 3.3 billion profit) - Projected change in 
profit without trade ($ 11.2 billion loss) 



Conclusion and Discussions

• Domestic food security and political isolationism (e.g. 2019-2020 trade
war with China)

• Study the role of interstate trade in a Ricardian model using a panel
dataset of 48 continental US states and 4 census years.

• A gravity model predicts the interstate trade flows and allows some
climate variables to have an indirect effect on local agricultural profit

• Projections highlight that interstate trade more than compensate for the
adverse effect of future weather conditions in the US ($ 14.5 billion
effect).

• Corroborate the conclusions at the international level: Reilly and
Hohmann (1993); Costinot et al. (2016); Dall’erba et al. (2021)
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Identifying sectoral climate damages after adaptation

Since the 1990s, a rich literature has sought to estimate climate
damages using historical data

Empirical challenge: adaptation may mitigate climate damages

Examples in agriculture: crop/varietal selection, shift in
growing season, irrigation infrastructure, multiple cropping

So the impact of climate is conceptually different from the
impact of weather

Estimand: Effect of climate inclusive of adaptation on an outcome

Example: GDP, land value, agricultural production, etc.

Without price changes (no trade adjustments)

“What would be the impact of climate change on the value of
US agricultural output, at current prices, after agents have
adapted to the new climate?”

2 / 15



Estimation strategies

Emerging line of thought:

Cross-sectional studies are irremediably plagued with OV bias
Panels grant clean (and large) exogenous variation in weather
But weather 6= climate

Envelope Theorem (ET): a central result of optimization theory

Agents’ adaptation actions are taken with a purpose
ET then implies tangency between

the (unobserved) value function that allows for adaptation
(outer envelope)
the (more easily observed) objective function when actions are
optimal

marginal climate impact =
marginal weather impact

3 / 15



Theoretical argument

Marginal weather impacts are inclusive of adaptation if:

Adaptation effects are continuous (Guo and Costello, 2013)

In the long run, agents actually maximize the outcome at
expected weather (i.e., climate)

But agents plausibly maximize the expected outcome

(P1) : max
a

Ey(X , a) instead of (P0) : max
a

y(EX , a)

We show that, under (P1):

A systematic ET result still obtains if and only if the 2nd-order
effects of weather on the outcome y are independent of
agents’ actions (a), i.e.:

y(X , a) = Γ(X ) + Ψ(a)X + Φ(a)

4 / 15
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Empirical implications

Any impact estimate β̂ identified from weather fluctuations reflects,
at best, the local (marginal) impact of climate after adaptation

Consider a non-marginal climate change, say ∆µ = +2◦C

∆Y = β̂∆µ only if Y is linear

In general, ∆Y is the integral of Y ′ from µ0 to µ0 + ∆µ

Estimating ∆Y thus requires a
collection of estimates of Y ′, i.e.,
marginal weather impacts β̂µ,
estimated at different climates µ
(Hsiang, 2016)

Once the weather/climate variables (e.g., temperature) have been
chosen, estimation of the long-run response is “model-free”

5 / 15



Illustration using US Agricultural GDP

Agriculture is arguably the sector most impacted by climate change

Ongoing discussion around the adaptation-inclusive impact of
climate change on US agriculture (Mendelsohn et al., 1994;
Schlenker et al., 2005; Deschênes and Greenstone, 2007; Schlenker
and Roberts, 2009; Fisher et al., 2012; Deschênes and Greenstone,
2012; Burke and Emerick, 2016; Mérel and Gammans, 2021)

Our data:

US county-level agricultural GDP (source: Bureau of
Economic Analysis)

Counties east of the 100th meridian, without irrigation

Almost balanced panel of 1,308 counties, 2001–2017

Weather data from PRISM

6 / 15



Joint estimation of local weather impacts

Model (1) assumes time-invariant locational climate µ(i):

yit = αi + αt + fstate(i)(t) + βµ(i)xit + εit (1)

βµ is the local marginal effect of weather at µ

Model (2) allows for time-varying locational climate µ(i , t):

yit = αi + αt + fstate(i)(t) + βµ(i ,t)xit + εit (2)

Model (3) adds state-specific weather slopes:

yit = αi + αt + fstate(i)(t) + βµ(i ,t)xit + γstate(i)xit + εit (3)

Identification of βµ relies on comparisons of counties with
themselves under different climates as well as
cross-comparison of counties but within states

7 / 15



Weather and climate variables

We consider 2 weather indicators measured over April–October:

Average temperature

Cumulative precipitation

Climate at any point in time is computed as

µit =

∑t−1
s=t−30 xis

30

For Model (1), climate is fixed and computed as

µ̄i =

∑2017
t=2001 µit

17

For each climate variable, we divide the spectrum of observed
climates into 100 climatic intervals (bins)

Each bin includes about 13 counties
8 / 15



Geographical distribution of climate bins in Model (1)

(a) Temperature (b) Precipitation
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Long-run responses to climate

Benchmark: quadratic in temperature and precipitation

(0) Benchmark (1) Stat. climate (2) Rolling climate (3) State slopes

Legend:
10 / 15



Simulated impact of a +2◦C scenario

(0) Benchmark (1) Stat. climate (2) Rolling climate (3) State slopes

Each dot corresponds to a county. The gray segments represent 95%
confidence intervals using Conley standard errors.

Aggregate estimates vary from -5% to -10% with SEs around 3.5

11 / 15



Take-home messages

Estimates of weather effects may identify climate impacts if agents:

follow (P0) : max
a

y(EX , a)

follow (P1) : max
a

Ey(X , a) and cannot alter 2nd-order

weather impacts

In favorable cases:

Only the local marginal effect of climate is identified

Recovering the response function requires:

Estimates of the marginal effect at adjacent climates
Integrating these over the counterfactual range of climates

Our illustration on US Ag. GDP suggests a 10% drop under a
+2◦C warming scenario

12 / 15
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